
The irace Package: User Guide
Manuel López-Ibáñez, Leslie Pérez Cáceres, Jérémie Dubois-Lacoste,

Thomas Stützle and Mauro Birattari
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Version 3.9.0.9000, November 21, 2024

Contents
1 General information 4

1.1 Background . 4
1.2 Version . 4
1.3 License . 4

2 Before starting 5

3 Installation 5
3.1 System requirements . 5
3.2 irace installation . 5

3.2.1 Install automatically within R . 6
3.2.2 Manual download and installation . 6
3.2.3 Local installation . 6
3.2.4 Testing the installation and invoking irace 7

4 Running irace 8
4.1 Step-by-step setup guide . 8
4.2 Setup example for ACOTSP . 11

5 Defining a configuration scenario 12
5.1 Target algorithm parameters . 12

5.1.1 Parameter types . 12
5.1.2 Parameter domains . 13
5.1.3 Parameter dependent domains . 13
5.1.4 Conditional parameters . 14
5.1.5 Forbidden parameter configurations . 14
5.1.6 Global options . 14
5.1.7 Parameter file format . 15
5.1.8 Parameters R format . 15

5.2 Target algorithm runner . 17
5.2.1 Target runner as an executable program 17
5.2.2 Target runner as an R function . 18

5.3 Target evaluator . 19

1

5.3.1 Target evaluator executable program . 20
5.3.2 Target evaluator R function . 20

5.4 Training instances . 21
5.5 Initial configurations . 22
5.6 Repairing configurations . 22

6 Parallelization 23

7 Testing (Validation) of configurations 25

8 Recovering irace runs 26

9 Output and results 27
9.1 Text output . 27
9.2 R data file (logFile) . 31
9.3 Analysis of results . 37

10 Advanced topics 39
10.1 Tuning budget . 39
10.2 Multi-objective tuning . 41
10.3 Tuning for minimizing computation time . 42
10.4 Hyper-parameter optimization of machine learning methods 43
10.5 Heterogeneous scenarios . 44
10.6 Choosing the statistical test . 45
10.7 Complex parameter space constraints . 45
10.8 Unreliable target algorithms and immediate rejection 46
10.9 Ablation Analysis . 47
10.10 Postselection race . 49
10.11 Parameter importance analysis using PyImp . 50

11 List of command-line and scenario options 51
11.1 General options . 51
11.2 Elitist irace . 52
11.3 Internal irace options . 52
11.4 Target algorithm parameters . 53
11.5 Target algorithm execution . 54
11.6 Initial configurations . 55
11.7 Training instances . 55
11.8 Tuning budget . 55
11.9 Statistical test . 56
11.10 Adaptive capping . 56
11.11 Recovery . 57
11.12 Testing . 57

12 FAQ (Frequently Asked Questions) 58
12.1 Is irace minimizing or maximizing the output of my algorithm? 58
12.2 Are experiments with irace reproducible? . 58
12.3 Is it possible to configure a MATLAB algorithm with irace? 58
12.4 My program works perfectly on its own, but not when running under irace. Is

irace broken? . 59

2

12.5 irace seems to run forever without any progress, is this a bug? 59
12.6 My program may be buggy and run into an infinite loop. Is it possible to set a

maximum timeout? . 60
12.7 When using the mpi option, irace is aborted with an error message indicating

that a function is not defined. How to fix this? 60
12.8 Error: 4 arguments passed to .Internal(nchar) which requires 3 61
12.9 Warning: In read.table(filename, header = TRUE, colClasses = "character", :

incomplete final line found by . 61
12.10 How are relative filesystem paths interpreted by irace? 61
12.11 My parameter space is small enough that irace could generate all possible

configurations; however, irace generates repeated configurations and/or does not
generate some of them. Is this a bug? . 61

12.12 On Windows and using target-runner.py (a Python file), I get the error target-
runner.py is not executable . 62

12.13 Error in socketConnection(. . .) : can not open the connection 62

13 Resources and contact information 62

14 Acknowledgements 62

Bibliography 63

Appendix A Installing R 65
A.1 GNU/Linux . 65
A.2 OS X . 65
A.3 Windows . 65

Appendix B targetRunner troubleshooting checklist 65

Appendix C targetEvaluator troubleshooting checklist 68

Appendix D Glossary 68

Appendix E NEWS 69

3

1 General information
1.1 Background
The irace package implements an iterated racing procedure, which is an extension of Iterated
F-race (I/F-Race) [3]. The main use of irace is the automatic configuration of optimization and
decision algorithms, that is, finding the most appropriate settings of an algorithm given a set of
instances of a problem. However, it may also be useful for configuring other types of algorithms
when performance depends on the used parameter settings. It builds upon the race package by
Birattari and it is implemented in R. The irace package is available from CRAN:

https://cran.r-project.org/package=irace

More information about irace is available at https://mlopez-ibanez.github.io/irace.

1.2 Version
The current version of the irace package is 3.9.0.9000. Previous versions of the package can also
be found in the CRAN website.

The algorithm underlying the current version of irace and its motivation are described by
López-Ibáñez et al. [12]. The adaptive capping mechanism available from version 3.0 is
described by Pérez Cáceres et al. [15]. Details of the implementation before version 2.0 can be
found in a previous technical report [11].

Versions of irace before 2.0 are not compatible with the file formats detailed in this document.

1.3 License
The irace package is Copyright © 2024 and distributed under the GNU General Public License
version 3.0 (http://www.gnu.org/licenses/gpl-3.0.en.html). The irace package is free soft-
ware (software libre): You can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

The irace package is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

Please be aware that the fact that this program is released as Free Software does not excuse
you from scientific propriety, which obligates you to give appropriate credit! If you write a
scientific paper describing research that made substantive use of this program, it is your obligation
as a scientist to (a) mention the fashion in which this software was used in the Methods section;
(b) mention the algorithm in the References section. The appropriate citation is:

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and
Mauro Birattari. The irace package: Iterated Racing for Automatic Algorithm Configura-
tion. Operations Research Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002

4

https://cran.r-project.org/package=irace
https://mlopez-ibanez.github.io/irace
https://cran.r-project.org/package=irace
http://www.gnu.org/licenses/gpl-3.0.en.html
http://dx.doi.org/10.1016/j.orp.2016.09.002

Training
instances

Parameter
space

Configuration
scenario

targetRunner

calls with θ,i returns c(θ,i)
iraceirace

Figure 1: Scheme of irace flow of information.

2 Before starting
The irace package provides an automatic configuration tool for tuning optimization algorithms,
that is, automatically finding good configurations for the parameters values of a (target) algorithm
saving the effort that normally requires manual tuning.

Figure 1 gives a general scheme of how irace works. Irace receives as input a parameter
space definition corresponding to the parameters of the target algorithm that will be tuned, a
set of instances for which the parameters must be tuned for and a set of options for irace that
define the configuration scenario. Then, irace searches in the parameter search space for good
performing algorithm configurations by executing the target algorithm on different instances
and with different parameter configurations. A targetRunner must be provided to execute the
target algorithm with a specific parameter configuration (θ) and instance (i). The targetRunner
function (or program) acts as an interface between the execution of the target algorithm and
irace: It receives the instance and configuration as arguments and must return the evaluation of
the execution of the target algorithm.

The following user guide contains guidelines for installing irace, defining configuration scenarios,
and using irace to automatically configure your algorithms.

3 Installation
3.1 System requirements
• R (version ≥ 3.2.0) is required for running irace, but you don’t need to know the R language

to use it. R is freely available and you can download it from the R project website (https:
//www.r-project.org). See Appendix A for a quick installation guide of R.

• For GNU/Linux and OS X, the command-line executable parallel-irace requires GNU
Bash. Individual examples may require additional software.

3.2 irace installation
The irace package can be installed automatically within R or by manual download and installation.
We advise to use the automatic installation unless particular circumstances do not allow it. The

5

https://www.r-project.org
https://www.r-project.org

instructions to install irace with the two mentioned methods are the following:

3.2.1 Install automatically within R

Execute the following line in the R console to install the package:

install.packages("irace")

Select a mirror close to your location, and test the installation in the R console with:

library("irace")
q() # To exit R

Alternatively, within the R graphical interface, you may use the Packages and data->Package installer
menu on OS X or the Packages menu on Windows.

3.2.2 Manual download and installation

From the irace package CRAN website (https://cran.r-project.org/package=irace), down-
load one of the three versions available depending on your operating system:

• irace_3.9.0.9000.tar.gz (Unix/BSD/GNU/Linux)

• irace_3.9.0.9000.tgz (OS X)

• irace_3.9.0.9000.zip (Windows)

To install the package on GNU/Linux and OS X, you must execute the following command at
the shell (replace <package> with the path to the downloaded file, either irace_3.9.0.9000.tar.gz
or irace_3.9.0.9000.zip):

R CMD INSTALL <package>

To install the package on Windows, open R and execute the following line on the R console
(replace <package> with the path to the downloaded file irace_3.9.0.9000.zip):

install.packages("<package>", repos = NULL)

If the previous installation instructions fail because of insufficient permissions and you do not
have sufficient admin rights to install irace system-wide, then you need to force a local installation.

3.2.3 Local installation

Let’s assume you wish to install irace on a path denoted by <R_LIBS_USER>, which is a filesystem
path for which you have sufficient rights. This directory must exist before attempting the
installation. Moreover, you must provide to R the path to this library when loading the package.
However, the latter can be avoided by adding the path to the system variable R_LIBS or to the R
internal variable .libPaths, as we will see below.1

On GNU/Linux or OS X, execute the following commands to install the package on a local
directory:

1On Windows, see also https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-
permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory.

6

https://cran.r-project.org/package=irace
https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory
https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory

export R_LIBS_USER="<R_LIBS_USER>"
Create R_LIBS_USER if it doesn't exist
mkdir $R_LIBS_USER
Replace <package> with the path to the downloaded file.
R CMD INSTALL --library=$R_LIBS_USER <package>
Tell R where to find R_LIBS_USER
export R_LIBS=${R_LIBS_USER}:${R_LIBS}

On Windows, you can install the package on a local directory by executing the following lines
in the R console:

Replace <package> with the path to the downloaded file.
Replace <R_LIBS_USER> with the path used for installation.
install.packages("<package>", repos = NULL, lib = "<R_LIBS_USER>")
Tell R where to find R_LIBS_USER.
This must be executed for every new session.
.libPaths(c("<R_LIBS_USER>", .libPaths()))

3.2.4 Testing the installation and invoking irace

Once irace has been installed, load the package and test that the installation was successful by
opening an R console and executing:

Load the package
library("irace")
Obtain the installation path
system.file(package = "irace")

The last command must print out the filesystem path where irace is installed. In the remainder
of this guide, the variable $IRACE_HOME is used to denote this path. When executing any provided
command that includes the $IRACE_HOME variable do not forget to replace this variable with the
installation path of irace.

On GNU/Linux or OS X, you can let the operating system know where to find irace by
defining the $IRACE_HOME variable and adding it to the system PATH. Append the following
commands to ~/.bash_profile, ~/.bashrc or ~/.profile:

Replace <IRACE_HOME> with the irace installation path
export IRACE_HOME=<IRACE_HOME>
export PATH=${IRACE_HOME}/bin/:$PATH
Tell R where to find R_LIBS_USER
Use the following line only if local installation was forced
export R_LIBS=${R_LIBS_USER}:${R_LIBS}

Then, open a new terminal and launch irace as follows:

irace --help

On Windows, you need to add both R and the installation path of irace to the environment
variable PATH. To edit the PATH, search for “Environment variables” in the control panel, edit
PATH and add a string similar to C:\R_PATH\bin;C:\IRACE_HOME\bin\x64\ where R_PATH is the

7

installation path of R and IRACE_HOME is the installation path of irace. If irace was installed
locally, you also need to edit the environment variable R_LIBS to add R_LIBS_USER. Then, open
a new terminal (run program cmd.exe) and launch irace as:

irace.exe --help

Alternatively, you may directly invoke irace from within the R console by executing:

library("irace")
irace_cmdline("--help")

4 Running irace
Before performing the tuning of your algorithm, it is necessary to define a tuning scenario that
will give irace all the necessary information to optimize the parameters of the algorithm. The
tuning scenario is composed of the following elements:

1. Target algorithm parameter description (see Section 5.1).

2. Target algorithm runner (see Section 5.2).

3. Training instances list (see Section 5.4)

4. irace options (see Section 11).

5. Optional: Initial configurations (see Section 5.5).

6. Optional: Target algorithm evaluator (see Section 5.3).

These scenario elements can be provided as plain text files or as R objects. This user guide
provides examples of both types, but we advise the use of plain text files, which we consider the
simpler option.

For a step-by-step guide to create the scenario elements for your target algorithm continue to
Section 4.1. For an example execution of irace using the ACOTSP scenario go to Section 4.2.

4.1 Step-by-step setup guide
This section provides a guide to setup a basic execution of irace. The template files provided
in the package ($IRACE_HOME/templates) will be used as basis for creating your new scenario.
Please follow carefully the indications provided in each step and in the template files used; if you
have doubts check the the sections that describe each option in detail.

1. Create a directory (e.g., ./tuning/) for the scenario setup. This directory will contain all
the files that describe the scenario. On GNU/Linux or OS X, you can do this as follows:

mkdir ./tuning
cd ./tuning

2. Initialize the tuning directory with template config files. On GNU/Linux or OS X, you can
do this as follows:

8

irace --init

3. Define the target algorithm parameters to be tuned by following the instructions in parameters.txt.
Available parameter types and other guidelines can be found in Section 5.1.

4. Optional: Define the initial parameter configuration(s) of your algorithm, which allows
you to provide good starting configurations (if you know some) for the tuning. Follow the
instructions in configurations.txt and set configurationsFile="configurations.txt"
in scenario.txt. More information in Section 5.5. If you do not need to define initial
configurations remove this file from the directory.

5. Place the instances you would like to use for the tuning of your algorithm in the folder
./tuning/Instances/. In addition, you can create a file (e.g., instances-list.txt) that
specifies which instances from that directory should be run and which instance-specific
parameters to use. To use such an instance file, set the appropriate option in scenario.txt,
e.g., trainInstancesFile = "instances-list.txt". See Section 5.4 for guidelines.

6. Uncomment and assign in scenario.txt only the options for which you need a value different
from the default. Some common options that you might want to adjust are:

execDir (--exec-dir): the directory in which irace will execute the target algorithm; the
default value is the current directory.

maxExperiments (--max-experiments): the maximum number of executions of the target
algorithm that irace will perform.

maxTime (--max-time): maximum total execution time in seconds for the executions of
targetRunner. In this case, targetRunner must return two values: cost and time. Note
that you must provide either maxTime or maxExperiments.

trainInstancesDir (--train-instances-dir): set if to ./Instances if you put the train-
ing instances in that folder as instructed above.

For setting the tuning budget see Section 10.1. For more information on irace options and
their default values, see Section 11.

7. Modify the target-runner script to run your algorithm. This script must execute your
algorithm with the parameters and instance specified by irace and return the evaluation of
the execution and optionally the execution time (cost [time]). When the maxTime option
is used, returning time is mandatory. The target-runner template is written in GNU Bash
scripting language, which can be executed easily in GNU/Linux and OS X systems. However,
you may use any other programming language. We provide examples written in Python,
MATLAB and other languages in $IRACE_HOME/examples/. Follow these instructions to
adjust the given target-runner template to your algorithm:

(a) Set the EXE variable with the path to the executable of the target algorithm.
(b) Set the FIXED_PARAMS if you need extra arguments in the execution line of your

algorithm. An example could be the time that your algorithm is required to run
(FIXED_PARAMS="--time 60") or the number of evaluations required (FIXED_PARAMS=
"--evaluations 10000").

(c) The line provided in the template executes the executable described in the EXE variable.
$EXE ${FIXED_PARAMS} -i ${INSTANCE} --seed ${SEED} ${CONFIG_PARAMS}

9

You must change this line according to the way your algorithm is executed. In this
example, the algorithm receives the instance to solve with the flag -i and the seed of
the random number generator with the flag --seed. The variable CONFIG_PARAMS adds
to the command line the parameters that irace has given for the execution. You must
set the command line execution as needed. For example, the instance might not need a
flag and might need to be the first argument:

$EXE ${INSTANCE} ${FIXED_PARAMS} --seed ${SEED} ${CONFIG_PARAMS}
The output of your algorithm is saved to the file defined in the $STDOUT variable, and
error output is saved in the file given by $STDERR. The line:

if [-s "$STDOUT"]; then
checks if the file containing the output of your algorithm is not empty. The example
provided in the template assumes that your algorithm prints in the last output line the
best result found (only a number). The line:

COST=$(cat ${STDOUT} | grep -e 'ˆ[[:space:]]*[+-]\?[0-9]' | cut -f1)
parses the output of your algorithm to obtain the result from the last line. The
target-runner script must print only one number. In the template example, the result
is printed with echo "$COST" (assuming maxExperiments is used) and the generated
files are deleted (you may remove that line if you wish to keep them).

The target-runner script must be an executable file, unless you specify
targetRunnerLauncher.

You can test the target runner from the R console by checking the scenario as explained
earlier in Section 4.
If you have problems related to the target-runner script when executing irace, see
Appendix B for a check list to help diagnose common problems. For more information
about the targetRunner, please see Section 5.2,

8. Optional: Modify the target-evaluator file. This is rarely needed and the target-runner
template does not use it. Section 5.3 explains when a targetEvaluator is needed and how
to define it.

9. The irace executable provides an option (--check) to check that the scenario is correctly
defined. We recommend to perform a check every time you create a new scenario. When
performing the check, irace will verify that the scenario and parameter definitions are correct
and will test the execution of the target algorithm. To check your scenario execute the
following commands:

• From the command-line (on Windows, execute irace.bat):
$IRACE_HOME is the installation directory of irace.
$IRACE_HOME/bin/irace --scenario scenario.txt --check

• Or from the R console:

library("irace")
scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())
checkIraceScenario(scenario = scenario)

10

10. Once all the scenario elements are prepared you can execute irace, either using the command-
line wrappers provided by the package or directly from the R console:

• From the command-line console, call the command (on Windows, you should execute
irace.exe):

cd ./tuning/
$IRACE_HOME is the installation directory of irace
By default, irace reads scenario.txt, you can specify a different file
with --scenario.
$IRACE_HOME/bin/irace

For this example we assume that the needed scenario files have been set properly in the
scenario.txt file using the options described in Section 11. Most irace options can be
specified in the command line or directly in the scenario.txt file.

• From the R console, evaluate:

library("irace")
Go to the directory containing the scenario files
setwd("./tuning")
scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())
irace_main(scenario = scenario)

This will perform one run of irace. See the output of irace --help in the command-line or
irace_cmdline("--help") in R for quick information on additional irace options. For more
information about irace options, see Section 11.

Command-line options override the same options specified in the scenario.txt file.

4.2 Setup example for ACOTSP
The ACOTSP tuning example can be found in the package installation in the folder $IRACE_
HOME/examples/acotsp. Other example scenarios can be found in the same folder. More
examples of tuning scenarios can be found in the Algorithm Configuration Library (AClib,
http://www.aclib.net/).

In this section, we describe how to execute the ACOTSP scenario. If you wish to start setting
up your own scenario, continue to the next section. For this example, we assume a GNU/Linux
system such as Ubuntu with a working C compiler such as gcc. To execute this scenario follow
these steps:

1. Create a directory for the tuning (e.g., ./tuning/) and copy the example scenario files located
in the examples folder to the created directory:

mkdir ./tuning
cd ./tuning
$IRACE_HOME is the installation directory of irace.
cp $IRACE_HOME/examples/acotsp/* ./tuning/

11

http://www.aclib.net/

2. Download the training instances from https://iridia.ulb.ac.be/supp/IridiaSupp2016-
003/index.html to the ./tuning/ directory.

3. Create the instance directory (e.g., ./tuning/Instances) and decompress the instance files
on it.

mkdir ./tuning/Instances/
cd ./tuning/
tar -xvf tsp-instances-training.tar.bz2 Instances/

4. Download the ACOTSP software from http://www.aco-metaheuristic.org/aco-code/ to
the ./tuning/ directory and compile it.

cd ./tuning/
tar -xvf ACOTSP-1.03.tgz
cd ./tuning/ACOTSP-1.03
make

5. Create a directory for executing the experiments and execute irace:

mkdir ./tuning/acotsp-arena/
cd ./tuning/
$IRACE_HOME is the installation directory of irace.
$IRACE_HOME/bin/irace

6. Or you can also execute irace from the R console using:

library("irace")
setwd("./tuning/")
irace_cmdline()

5 Defining a configuration scenario
5.1 Target algorithm parameters
The parameters of the target algorithm are defined by a parameter file as described in Section 5.1.7.
Optionally, when executing irace from the R console, the parameters can be specified directly as
an R object (see Section 5.1.8). For defining your parameters follow the guidelines provided in
the following sections.

5.1.1 Parameter types

Each target parameter has an associated type that defines its domain and the way irace handles
them internally. Understanding the nature of the domains of the target parameters is important
to select appropriate types. The four basic types supported by irace are the following:

• Real parameters are numerical parameters that can take floating-point values within a given
range. The range is specified as an interval ‘(<lower bound>,<upper bound>)’. This interval
is closed, that is, the parameter value may eventually be one of the bounds. The possible

12

https://iridia.ulb.ac.be/supp/IridiaSupp2016-003/index.html
https://iridia.ulb.ac.be/supp/IridiaSupp2016-003/index.html
http://www.aco-metaheuristic.org/aco-code/

values are rounded to a number of decimal places specified by the global option digits
(Section 5.1.6). For example, given the default number of digits of 4, the values 0.12345
and 0.12341 are both rounded to 0.1234. Selected real-valued parameters can be optionally
sampled on a logarithmic scale (base e).

• Integer parameters are numerical parameters that can take only integer values within the
given range. Their range is specified as the range of real parameters and they can also be
optionally sampled on a logarithmic scale (base e).

• Categorical parameters are defined by a set of possible values specified as ‘(<value 1>, ...,
<value n>)’. The values are quoted or unquoted character strings. Empty strings and strings
containing commas or spaces must be quoted.

• Ordinal parameters are defined by an ordered set of possible values in the same format as for
categorical parameters. They are handled internally as integer parameters, where the integers
correspond to the indexes of the values.

Boolean (or logical) parameters are best encoded as categorical ones with just two values rather
than integer ones with domain (0, 1). Some boolean parameters take an explicit value (0/1 or
true/false) such as:
dlb "--dlb " c (0, 1)
Others are switches whose presence activates the parameter:
dlb "" c ("", "--dlb")

5.1.2 Parameter domains

For each target parameter, an interval or a set of values must be defined according to its type,
as described above. There is no limit for the size of the set or the length of the interval, but
keep in mind that larger domains could increase the difficulty of the tuning task. Choose always
values that you consider relevant for the tuning. In case of doubt, we recommend to choose larger
intervals, as occasionally best parameter settings may be not intuitive a priori. All intervals are
considered as closed intervals.

It is possible to define parameters that will have always the same value. Such “fixed” parameters
will not be tuned but their values are used when executing the target algorithm and they are
affected by constraints defined on them. All fixed parameters must be defined as categorical
parameters and have a domain of one element.

5.1.3 Parameter dependent domains

Domains that are dependent on the values of other parameters can be specified only for numerical
parameters (both integer and real). To do so, the dependent domain must be expressed in function
of another parameter, which must be a numerical parameter. The expression that defines a
dependency must be written between quotes: (value,"expression") or ("expression",value)
or ("expression","expression").

The expressions can only use the following operators and R functions: +, -, *, /, %%, min, max,
round, floor, ceiling, trunc. If you need to use an operator or function not listed here, please
contact us.

The user must ensure that the defined domain is valid at all times since irace currently is not able
to detect possible invalid domains based on the expressions provided.

13

If you have a parameter p2 that is just a transformation of another p1, then instead of using a
dependent domain (left-hand side of the following example), it will be better to create a dummy
parameter that controls the transformation (right-hand side) and do the transformation within
target-runner. For example:

With dependent domains
p1 "" r (0, 100)
p2 "" r ("p1", "p1 + 10")

should be
With a dummy parameter
p1 "" r (0, 100)
p2dum "" r (0, 10)

and target-runner will compute p2 = p2dum · p1.

5.1.4 Conditional parameters

Conditional parameters are active only when others have certain values. These dependencies
define a hierarchical relation between parameters. For example, the target algorithm may have a
parameter localsearch that takes values (sa,ts) and another parameter ts-length that only
needs to be set if the first parameter takes precisely the value ts. Thus, parameter ts-length is
conditional on localsearch == "ts".

5.1.5 Forbidden parameter configurations

A line containing just [forbidden] ends the list of parameters and starts the list of forbidden
expressions. Each line is a logical expression (in R syntax) containing parameter names as defined
by the parameterFile (Section 5.1), values and logical operators. For a list of R logical operators
see:

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

If irace generates a parameter configuration that makes any of the logical expressions evaluate
to TRUE, then the configuration is considered forbidden and it is never evaluated. This is useful
when some combination of parameter values could cause the target algorithm to crash, consume
excessive CPU time or memory, or when it is known that they do no produce satisfactory results.

Initial configuration (Section 5.5) that are forbidden will be discarded with a warning.

If the forbidden constraints provided are too strict, irace may produce the following error:

irace tried 100 times to sample from the model a configuration not forbidden
without success, perhaps your constraints are too strict?

In that case, it may be a good idea to reformulate the forbidden constraints as conditional param-
eters (Section 5.1.4), parameter-dependent domains (Section 5.1.3), repairing the configurations
(Section 5.6) or post-processing within the target-algorithm (Section 10.7).

5.1.6 Global options

A line containing just [global] starts the definition of global options. The only global option
currently implemented is digits, which controls the number of decimal digits for real valued
parameters. Its default value is 4.

14

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

5.1.7 Parameter file format

For simplicity, the description of the parameters space is given as a table. Each line of the table
defines a configurable parameter

<name> <label> <type> <domain> [| <condition>]

where each field is defined as follows:

<name> The name of the parameter as an unquoted alphanumeric string, e.g., ‘ants’.
<label> A label for this parameter. This is a string that will be passed together with the

parameter to targetRunner. In the default targetRunner provided with the package
(Section 5.2), this is the command-line switch used to pass the value of this parameter,
for instance ‘"--ants "’.
The value of the parameter is concatenated without separator to the label when
invoking targetRunner, thus any whitespace in the label is significant. Following
the same example, when parameter ants takes value 5, the default targetRunner
will pass the parameter as "--ants 5".

<type> The type of the parameter, either integer, real, ordinal or categorical, given as a
single letter: ‘i’, ‘r’, ‘o’ or ‘c’. Numerical parameters can be sampled using a natural
logarithmic scale with ’i,log’ and ’r,log’ (without spaces) for integer and real
parameters, respectively.

<domain> The range or set of values of the parameter delimited by parentheses, e.g., (0,1) or
(a,b,c,d). See also parameter dependent domains (Section 5.1.3).

<condition> An optional condition that determines whether the parameter is enabled or disabled,
thus making the parameter conditional. If the condition evaluates to false, then
no value is assigned to this parameter, and neither the parameter value nor the
corresponding label are passed to targetRunner. The condition must follow the
same syntax as those for specifying forbidden configurations (see below), that is, it
must be a valid R logical expression2. The condition may contain the name of other
parameters as long as the dependency graph does not contain any cycle. Otherwise,
irace will detect the cycle and stop with an error.

Categorical and ordinal parameters are always treated as strings. Given a parameter like:
a "" c (0, 5, 10, 20)
then, a condition like a >10 will be true when a is 5, because comparisons between strings are
lexicographic and "10" is sorted before "5". As a work-around, you can convert the string to
numeric in the condition with as.numeric(a).

As an example, Figure 2 shows the parameters file of the ACOTSP scenario.

5.1.8 Parameters R format

The target parameters are stored in an R list that you can obtain from the R console using the
following command:

parameters <- readParameters(file = "parameters.txt")

See the help of the readParameters function (?readParameters) for more information. The
structure of the parameter list that is created is as follows:

2For a list of R operators see: https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

15

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

name switch type values [conditions (using R syntax)]
algorithm "--" c (as,mmas,eas,ras,acs)
localsearch "--localsearch " c (0, 1, 2, 3)
alpha "--alpha " r (0.00, 5.00)
beta "--beta " r (0.00, 10.00)
rho "--rho " r (0.01, 1.00)
ants "--ants " i (5, 100)
nnls "--nnls " i (5, 50) | localsearch %in% c(1, 2, 3)
q0 "--q0 " r (0.0, 1.0) | algorithm == "acs"
dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)
rasrank "--rasranks " i (1, "ants") | algorithm == "ras"
elitistants "--elitistants " i (1, 750) | algorithm == "eas"

[forbidden]
Examples of valid logical operators are:
== != >= <= > < & | ! %in%
(alpha == 0.0) & (beta == 0.0)

Figure 2: Parameter file (parameters.txt) for tuning ACOTSP.

names Vector that contains the names of the parameters.
types Vector that contains the type of each parameter ’i’, ’c’, ’r’, ’o’.

switches Vector that contains the labels of the parameters. e.g., switches to be used
for the parameters on the command line.

domain List of vectors, where each vector may contain two values (minimum, maxi-
mum) for real and integer parameters, or a set of values for categorical and
ordinal parameters.

conditions List of R logical expressions, with variables corresponding to parameter
names.

isFixed Logical vector that specifies which parameter is fixed and, thus, it does not
need to be tuned.

transform Vector that contains the transformation of each parameter. Currently, it can
take values ‘‘’’ (no transformation, default) of ‘‘log’’ (natural logarithmic
transformation).

nbParameters An integer, the total number of parameters.
nbFixed An integer, the number of parameters with a fixed value.

nbVariable Number of variable (i.e., to be tuned) parameters.
isDependent Logical vector that specifies which parameter defines a dependent domain.

forbidden List of R logical expressions that cannot evaluate to TRUE for any evaluated
configuration.

The following example shows the structure of the parameters R object for the algorithm,
ants and q0 parameters of the ACOTSP scenario:

> str(parameters, vec.len = 10)

Classes 'ParameterSpace', 'R6' <ParameterSpace>
Public:

16

.params: list
as_character: function ()
clone: function (deep = FALSE)
conditions: list
depends: list
domains: list
forbid_configurations: function (x)
forbidden: NULL
get: function (x)
get_ordered: function ()
hierarchy: 1 1 2
initialize: function (..., forbidden = NULL, verbose = 0L)
isFixed: FALSE FALSE FALSE
names: algorithm ants q0
names_fixed:
names_numeric: ants q0
names_variable: algorithm ants q0
nbFixed: 0
nbParameters: 3
nbVariable: 3
switches: -- --ants --q0
types: c i r

5.2 Target algorithm runner
The evaluation of a candidate configuration on a single instance is done by means of a user-given
auxiliary program or, alternatively, a user-given R function. The function (or program name) is
specified by the option targetRunner. The targetRunner must return the cost value (e.g., cost
of the best solution found) of the evaluation; unless computing the cost requires information from
all the configurations evaluated on an instance, e.g., when evaluating multi-objective algorithms
with unknown normalisation bounds (see Section 5.3 for details).

The objective of irace is to minimize the cost value returned by the target algorithm. If you wish
to maximize, you can multiply the cost by -1 before returning it to irace.

5.2.1 Target runner as an executable program

When targetRunner is an auxiliary executable program, it is invoked for each candidate configu-
ration, passing as arguments:

<id_configuration> <id_instance> <seed> <instance> [bound] <configuration>

17

id_configuration an alphanumeric string that uniquely identifies a configuration;
id_instance an alphanumeric string that uniquely identifies an instance;

seed seed for the random number generator to be used for this evaluation,
ignore the seed for deterministic algorithms;

instance string giving the instance to be used for this evaluation;
bound optional execution time bound. Only provided when the boundMax option

is set in the scenario, see Section 10.3;
configuration the pairs parameter label-value that describe this candidate configuration.

Typically given as command-line switches to be passed to the executable
program.

The experiment list shown in Section 5.2.2, would result in the following execution line:

target-runner 1 113 734718556 /home/user/instances/tsp/2000-533.tsp \
--eas --localsearch 0 --alpha 2.92 --beta 3.06 --rho 0.6 --ants 80

The command line switches that describe the candidate configuration are constructed by
appending to each parameter label (switch), without separator, the value of the parameter,
following the order given in the parameter table. The program targetRunner must print a real
number, which corresponds to the cost measure of the candidate configuration for the given
instance and optionally its execution time (mandatory when maxTime is used and/or when the
capping option is enabled). The working directory of targetRunner is set to the execution
directory specified by the option execDir. This allows the user to execute independent runs of
irace in parallel using different values for execDir, without the runs interfering with each other.

5.2.2 Target runner as an R function

When targetRunner is an R function, it is invoked for each candidate configuration as:

targetRunner(experiment, scenario)

where experiment is a list that contains information about configuration and instance to execute
one experiment, and scenario is the scenario list. The structure of the experiment list is as
follows:

id_configuration an alphanumeric string that uniquely identifies a configuration;
id_instance an alphanumeric string that uniquely identifies an instance;

seed seed to be used for this evaluation;
instance string giving the instance to be used for this evaluation;

bound optional execution time bound;
configuration 1-row data frame with a column per parameter name;

switches vector of parameter switches (labels) in the order of parameters used in
configuration.

The following is an example of an experiment list for the ACOTSP scenario:

> print(experiment)

18

$id_configuration
[1] 1

$id_instance
[1] 7

$seed
[1] 2062824562

$configuration
algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank

1 as 0 1 1 0.95 10 NA NA <NA> NA
elitistants time

1 NA 5

$instance
[1] "./instances/1000-7.tsp"

$switches
algorithm localsearch alpha beta

"--" "--localsearch " "--alpha " "--beta "
rho ants nnls q0

"--rho " "--ants " "--nnls " "--q0 "
dlb rasrank elitistants time

"--dlb " "--rasranks " "--elitistants " "--time "

You can find an example that calls MATLAB from R using this approach here: https:
//github.com/MLopez-Ibanez/irace/blob/master/inst/examples/matlab/scenario.txt.

If targetEvaluator is NULL, then the targetRunner function must return a list with at least
one element "cost", the numerical value corresponding to the evaluation of the given configuration
on the given instance. A cost of Inf is accepted and results in the immediate rejection of the
configuration (see Section 10.8).

If the scenario option maxTime is non-zero or if the capping option is enabled, then the list
must contain at least another element "time" that reports the execution time for this call to
targetRunner.

The return list may also contain the following optional elements that are used by irace for
reporting errors in targetRunner:

error is a string used to report an error;
outputRaw is a string used to report the raw output of calls to an external program or function;

call is a string used to report how targetRunner called an external program or function;

5.3 Target evaluator
Normally, targetRunner returns the cost of the execution of a candidate configuration (see
Section 5.2). However, there are cases when the cost evaluation must be delayed until all
candidate configurations in a race have been executed on a instance.

The targetEvaluator option defines an auxiliary program (or an R function) that allows
postponing the evaluations of the candidate configurations. For each instance seen, the program

19

https://github.com/MLopez-Ibanez/irace/blob/master/inst/examples/matlab/scenario.txt
https://github.com/MLopez-Ibanez/irace/blob/master/inst/examples/matlab/scenario.txt

targetEvaluator is only invoked after all the calls to targetRunner for all alive candidate
configurations on the same instance have already finished.

When using targetEvaluator, targetRunner must not return the evaluation of the configuration.
If maxTime is used, targetRunner must return only execution time.

As an example, targetEvaluator may be used to dynamically find normalization bounds for
the output returned by an algorithm for each individual instance. In this case, targetRunner
will save the output of the algorithm, then the first call to targetEvaluator will examine the
output produced by all calls to targetRunner for the same instance, update the normalization
bounds and return the normalized output. Subsequent calls to targetEvaluator for the same
instance will simply return the normalized output.

A similar need arises when using quality measures for multi-objective optimization algorithms,
such as the hypervolume, which typically require specifying reference points or sets. By using
targetEvaluator, it is possible to dynamically compute the reference points or sets while irace
is running. Examples are provided at examples/hypervolume. See also Section 10.2 for more
information on how to tune multi-objective algorithms.

5.3.1 Target evaluator executable program

When targetEvaluator is an auxiliary executable program, it is invoked for each candidate with
the following arguments:

<id_configuration> <id_instance> <seed> <instance> <num_configurations> <all_conf_id>

id_configuration an alphanumeric string that uniquely identifies a configuration;
id_instance an alphanumeric string that uniquely identifies an instance;

seed seed to be used for this evaluation;
instance string giving the instance to be used for this evaluation;

num_configurations number of alive candidate configurations;
all_conf_id list of IDs of the alive configurations separated by whitespace.

The targetEvaluator executable must print a numerical value corresponding to the cost
measure of the candidate configuration on the given instance.

5.3.2 Target evaluator R function

When targetEvaluator is an R function, it is invoked for each candidate configuration as:

targetEvaluator(experiment, num_configurations, all_conf_id, scenario,
target_runner_call)

where experiment is a list that contains information about one experiment (see Section 5.2.2),
num_configurations is the number of configurations alive in the race, all_conf_id is the vector
of IDs of the alive configurations, scenario is the scenario list and target_runner_call is the
string of the targetRunner execution line.

The function targetEvaluator must return a list with one element "cost", the numerical
value corresponding to the cost measure of the given configuration on the given instance.

The return list may also contain the following optional elements that are used by irace for
reporting errors in targetEvaluator:

20

error is a string used to report an error;
outputRaw is a string used to report the raw output of calls to an external program or function;

call is a string used to report how targetEvaluator called an external program or
function;

5.4 Training instances
The irace options trainInstancesDir and trainInstancesFile specify where to find the train-
ing instances. If you only set the value of trainInstancesDir (e.g., to ./Instances), irace will
consider all files within that directory as training instances.

Otherwise, the value of trainInstancesFile may specify a text file. The format of this file
is one instance per line. Within each line, elements separated by white-space will be parsed
as separate arguments to be supplied to targetRunner. This allows defining instance-specific
parameter settings. Quoted strings will be parsed as a single argument. The following example
shows a training instance file for the ACOTSP scenario:

Example training instances file
100/100-1_100-2.tsp --time 1
100/100-1_100-3.tsp --time 2
100/100-1_100-4.tsp --time 3

Figure 3: Training instances file for tuning ACOTSP.

The value of trainInstancesDir, if set, is always prefixed to the instance name, that is, the
instances names are treated as relative to this directory. For example, given the above file as
trainInstancesFile and trainInstancesDir="./Instances", then a possible invocation of
targetRunner would be:

target-runner 1 4 5718 ./Instances/100/100-1_100-2.tsp --time 1 --alpha 2.92 ...

Training instances do not need to be files, irace just passes the elements of each line as
arguments to targetRunner, thus each line may denote the name of a benchmark function or a
label, plus instance-specific settings, that the target algorithm understands. Each line may even
be the command-line parameters required to call an instance generator within targetRunner.
When the instances do not represent actual files, then trainInstancesDir is usually set to the
empty string (--train-instances-dir=""). For example,

Example training instances file
rosenbrock_20 --function=12 --nvar 20
rosenbrock_30 --function=12 --nvar 30
rastrigin_20 --function=15 --nvar 20
rastrigin_30 --function=15 --nvar 30

Optionally, when executing irace from the R console, the list of instances might be provided
explicitly by means of the variable scenario$instances. Thus, the previous example would be
equivalent to:

scenario$instances <- c("rosenbrock_20 --function=12 --nvar 20",
"rosenbrock_40 --function=12 --nvar 30",
"rastrigin_20 --function=15 --nvar 20",
"rastrigin_40 --function=15 --nvar 30")

21

By default, irace assumes that the target algorithm is stochastic (the value of the option
deterministic is 0), thus, the same configuration can be executed more than once on the same
instance and obtain different results. In this case, irace generates pairs (instance,seed) by
generating a random seed for each instance. In other words, configurations evaluated on the same
instance use the same random seed. This is a well-known variance reduction technique called
common random numbers [14]. If all available pairs are used within a run of irace, new pairs are
generated with different seeds, that is, a configuration evaluated more than once per instance will
use different random seeds.

If deterministic is set to 1, then each instance will be used at most once per race. This
setting should only be used for target algorithms that do not have a stochastic behavior and,
therefore, executing the target algorithm on the same instance several times with different seeds
does not make sense.

If deterministic is active and the number of training instances provided to irace is less than
firstTest (default: 5), no statistical test will be performed on the race.

Finally, irace randomly re-orders the sequence of instances provided. This random sampling
may be disabled by using the option sampleInstances (--sample-instances 0) if keeping the
order provided in the instance file is important.

We advise to always sample instances to prevent biasing the tuning due to the instance order. See
also Section 10.5

5.5 Initial configurations
The scenario option configurationsFile allows specifying a text file that contains an initial set
of configurations to start the execution of irace. If the number of initial configurations supplied in
the file is less than the number of configurations required by irace in the first iteration, additional
configurations will be sampled uniformly at random.

The format of the configurations file is one configuration per line, and one parameter value
per column. The first line must give the parameter name corresponding to each column (names
must match those given in the parameters file). Each configuration must satisfy the parameter
conditions (NA should be used for those parameters that are not enabled for a given configuration)
and not be forbidden by the constraints that define forbidden configurations (Section 5.1.5), if
any.

Figure 4 gives an example file that corresponds to the ACOTSP scenario.
Initial candidate configuration for irace
algorithm localsearch alpha beta rho ants nnls dlb q0 rasrank elitistants
as 0 1.0 1.0 0.95 10 NA NA 0 NA NA

Figure 4: Initial configuration file (default.txt) for tuning ACOTSP.

We advise to use this feature when a default configuration of the target algorithm exists or
when different sets of good parameter values are known. This will allow irace to start the search
from those parameter values and attempt to improve their performance.

5.6 Repairing configurations
In some problems, the parameter values require complex constraints that cannot be imple-
mented by constraints defined in the parameter space (Section 5.1.5). The scenario option

22

repairConfiguration can be set to a user-defined R function that takes a single configuration
generated by irace and returns a “repaired” configuration, thus allowing the implementation of any
rules necessary to satisfy arbitrary constraints on parameter values. The repairConfiguration
function is called after generating a configuration and before checking for forbidden configurations.
The first argument is a 1-row data.frame with parameter names as the column names and the
second argument is the parameters list (Section 5.1.8). An example that makes all real-valued
parameters sum up to one would be:

repairConfiguration = function(configuration, parameters)
{

isreal <- names(which(parameters$types[colnames(configuration)] == "r"))
This ignores 'digits'
c_real <- unlist(configuration[isreal])
c_real <- c_real / sum(c_real)
configuration[isreal] <- c_real
return(configuration)

}

The following example forces three specific parameters to be in increasing order:

repairConfiguration = function(configuration, parameters)
{
columns <- c("p1","p2","p3")
cat("Before"); print(configuration)
configuration[columns] <- sort(unlist(configuration[columns], use.names=FALSE))
cat("After"); print(configuration)
return(configuration)

}

The above code can be specified directly in the scenarioFile, by default scenario.txt.

6 Parallelization
A single run of irace can be done much faster by executing the calls to targetRunner (the runs
of the target algorithm) in parallel. There are four ways to parallelize a single run of irace:

1. Parallel processes: The option parallel executes multiple calls to targetRunner in
parallel within a single computer, by means of the parallel R package. For example, adding
--parallel N to the command line of irace will launch in parallel up to N calls of the target
algorithm. When using this option within a computing cluster, irace will be submitted as
a job in some way that tells the cluster to “reserve” N CPUs (or tasks depending on the
cluster) within a single cluster node (a single machine).

2. MPI: By enabling the option mpi, calls to targetRunner will be executed in parallel by
using the message passing interface (MPI) protocol (requires the Rmpi R package). In this
case, the option parallel controls the number of slave nodes used by irace. For example,
adding --mpi 1 --parallel N to the command-line will create N slaves + 1 master, and
execute up to N calls of targetRunner in parallel.
The user is responsible for setting up the required MPI environment. MPI is commonly
available in computing clusters and requires launching irace in some particular way. An

23

example script for using MPI mode in a SGE cluster is given at $IRACE_HOME/bin/parallel-
irace-mpi.
By default, irace dynamically balances the load among nodes, however, this may significantly
increase communication overhead in some parallel environments and disabling loadBalancing
may be faster.

3. Batch queue mode: Some computing clusters work by submitting jobs to a batch queue
and waiting for the jobs to finish. With the option batchmode (--batchmode [sge|pbs|
torque|slurm]), irace will launch in parallel as many calls of targetRunner as possible and
use a cluster-specific method to wait for jobs to finish. In this mode, parallel controls
how many jobs are queued and should be set to the queue limit of your cluster. If your
cluster type is not supported or not working as expected, please submit a pull request
(https://github.com/MLopez-Ibanez/irace/pulls) adding support to your cluster type.
See the examples in $IRACE_HOME/examples/batchmode-cluster/.

In batchmode, irace runs in the submission node of the cluster, hence, irace is not submitted
to the cluster as a job (that is, neither qsub nor squeue should be used to invoke irace itself).
The user must call the appropriate job submission command (e.g., qsub or squeue) from
targetRunner with the appropriate settings for their cluster, that is, targetRunner submits
one job to the cluster and prints a single string: The job ID that allows irace to determine
the status of the running job. Moreover, the use of a separate targetEvaluator script is
required to collect the results of targetRunner and return them to irace.

4. targetRunnerParallel: This option allows users to fully control the parallelization of the
execution of targetRunner. Its value must be an R function that will be invoked by irace as
follows:

targetRunnerParallel(experiments, exec_target_runner, scenario, target_runner)

where scenario is the list describing the configuration scenario (Section 5); experiments is
a list that describes the configurations and instances to be executed (see Section 5.2 for a
description); target_runner is the function that calls the target algorithm and it is the same
as targetRunner, if the latter is a function, or it is a call to target_runner_default, if
targetRunner is the path to an executable; and exec_target_runner is an internal function
within irace that takes care of executing target_runner, check its output and, possibly, retry
in case of error (see targetRunnerRetries). The targetRunnerParallel function should
call the given target_runner function for each element in the experiments list, possibly
using exec_target_runner as a wrapper. A trivial example would be:

targetRunnerParallel <- function(experiments, exec_target_runner, scenario,
target_runner)

{
lapply(experiments, exec_target_runner, scenario = scenario,

target_runner = target_runner)
}

However, the user is free to set up the calls in any way, perhaps implementing its own
replacement for target_runner and/or exec_target_runner. The user may load and call
other R packages, such as batchtools (https://mllg.github.io/batchtools/).

24

https://github.com/MLopez-Ibanez/irace/pulls
https://mllg.github.io/batchtools/

The only requirement is that the targetRunnerParallel function must return a list of
the same length as experiments, where each element is the output expected from the
corresponding call to targetRunner (see Section 5.2).
The following is an example of the output of a call to targetRunnerParallel with 2
experiments, in which the execution time is not reported:

print(output)

[[1]]
[[1]]$cost
[1] 28407696
##
[[1]]$time
numeric(0)
##
##
[[2]]
[[2]]$cost
[1] 23336177
##
[[2]]$time
numeric(0)

The best option will depend on the resources available to you. Option 1 is usually the fastest
and simplest to setup. Running on a node (machine) with 128 CPUs will be faster than running
on 8 nodes with 16 CPUs because the communication between nodes required by MPI can be very
slow depending on the cluster. Option 2 may be faster if irace generates more configurations per
iteration than the number of CPUs of a single node. However, depending on the configuration of
your cluster, requesting many CPUs may require waiting in the queue a long time. Option 3 may
be the slowest since irace has to check the queue frequently. However, irace will start running
experiments as soon as 1 CPU is available, thus option 3 may actually finish earlier than the
other options if there is always some CPUs available in the cluster but the queue for requesting
many CPUs at once is very long.

As a rule-of-thumb, if you only have access to a single machine, then you only need option 1.
If you have access to a computing cluster with multiple machines, then use option 1 with the
maximum number of CPUs that a single node has in your computing cluster. If that number is
64 or more, it should be enough unless a single run of irace evaluates thousands of configurations.
Otherwise, investigate option 2. If option 2 does not work, then investigate option 3.

7 Testing (Validation) of configurations
Once the tuning process is finished, irace returns a set of configurations corresponding to the
elite configurations at the end of the run, ordered from best to worst. In order to evaluate the
generality of these configurations without looking at their performance on the training set, irace
offers the possibility of evaluating these configurations on a test instance set, typically different
from the training set used during the tuning phase. These evaluations will use the same settings
for parallel execution, targetRunner and targetEvaluator.

25

The test instances can be specified by the options testInstancesDir and/or testInstancesFile,
or by setting directly the variable scenario$testInstances. These options behave similarly to
their counterparts for the training instances (Section 5.4). In particular, each test instance is
assigned a different seed in the same way as done for the training instances. In principle, irace
evaluates each configuration on each testing instance just once, because evaluating one run on n
instances is always better than evaluating n′ runs on n/n′ instances [2]. However, if the number
of instances is limited, one can always duplicate instances as needed in the testInstancesFile,
and irace will assign a different random seed to each instance. An example of the output produced
by irace when testing is shown in Fig. 5.

The options testNbElites and testIterationElites control which configurations are eval-
uated during the testing phase. In particular, setting testIterationElites = 1 will test not
only the final set of elite configurations (those returned at the end of the training phase), but
also the set of elites at the end of each race (iteration). The option testNbElites limits the
maximum number of configurations considered within each set. Some examples:

• testIterationElites = 0; testNbElites = 1 means that only the best configuration
found during the run of irace, the final best, will be used in the testing phase.

• testIterationElites = 1; testNbElites = 1 will test, in addition to the final best, the
best configuration found at each iteration.

• testIterationElites = 1; testNbElites = 2 will test the two best configurations found
at each iteration, in addition to the final best and second-best configurations.

The testing can be also (re-)executed at a later time by using the following R command (but
you may need to override testNbElites and testIterationElites):

testing_fromlog(logFile = "./irace.Rdata", testNbElites = 1)

The above line will load the scenario setup from logFile to perform the testing. The testing
results will be stored in the R object iraceResults$testing, which is saved in the file specified
by scenario$logFile. The structure of the object is described in Section 9.2. For examples on
how to analyse the results see Section 9.3.

Another alternative is to test a specific set of configurations using the command-line option
--only-test as follows:

irace --only-test configurations.txt

where configurations.txt has the same format as the set of initial configurations (Section 5.5).

8 Recovering irace runs
Problems like power cuts, hardware malfunction or the need to use computational power for
other tasks may occur during the execution of irace, terminating a run before completion. At the
end of each iteration, irace saves an R data file (logFile, by default "./irace.Rdata") that not
only contains information about the tuning progress (Section 9.2), but also internal information
that allows recovering an incomplete execution.

To recover an incomplete irace run, set the option recoveryFile to the log file previously
produced, and irace will continue the execution from the last saved iteration. The state of the
random generator is saved and loaded, therefore, as long as the execution is continued in the same
machine, the obtained results will be exactly the same as executing irace in one step (external

26

factors, such as CPU load and disk caches, may affect the target algorithm and that may affect
the results). You can specify the recoveryFile from the command-line or from the scenario file,
and execute irace as described in Section 4. For example, from the command-line use:

irace --recovery-file "./irace-backup.Rdata"

When recovering a previous run, irace will try to save data on the file specified by the logFile
option. Thus, you must specify different files for logFile and recoveryFile. Before recovering,
we strongly advise to rename the saved R data file as in the example above, which uses
"irace-backup.Rdata".

Do not change anything in the log file or the scenario file before recovering, as it may have
unexpected effects on the recovered run of irace. In case of doubt, please contact us first
(Section 13). In particular, it is not possible to continue a run of irace by recovering with a larger
budget. Results will not be the same as running irace from the start with the largest budget. An
alternative is to use the final configurations from one run as the initial configurations of a new run.

If your scenario uses targetEvaluator (Section 5.3) and targetEvaluator requires files created
by targetRunner, then recovery will fail if those files are not present in the execDir directory.
This can happen, for example, if you recover from a different directory than the one from which
irace was initially executed, or when execDir is set to a temporary directory for every irace run.
Thus, you need to copy the contents of the previous execDir into the new one.

9 Output and results
During its execution, irace prints information about the progress of the tuning in the standard
output. Additionally, after each iteration, an R data file is saved (logFile option) containing the
state of irace.

9.1 Text output
Figure 6 shows the output, up to the end of the first iteration, of a run of elitist irace applied to
the ACOTSP scenario with 1000 evaluations as budget.

First, irace gives the user a warning informing that it has found a file with the default scenario
filename and it will use it. Then, general information about the selected irace options is printed:

• nbIterations indicates the minimum number of iterations irace has calculated for the scenario.
Depending on the development of the tuning the final iterations that are executed can be
more.

• minNbSurvival indicates the minimum number of alive configurations that are required to
continue a race. When less configurations are alive the race is stopped and a new iteration
begins.

• nbParameters is the number of parameters of the scenario.

• seed is the number that was used to initialize the random number generator in irace.

• confidence level is the confidence level of the statistical test.

• budget is the total number of evaluations available for the tuning.

• time budget is the maximum execution time available for the tuning.

27

...

Testing of elite configurations: 5
Testing iteration configurations: TRUE
2023-10-01 13:35:17 BST: Testing configurations (in no particular order): 2 29 3 20 50 34 47 86 74 111 106 92 123 134 130 119

algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants
2 acs 3 1.1275 3.3469 0.6471 36 43 0.9053 0 NA NA
29 ras 3 4.5152 5.6811 0.7818 11 43 NA 0 13 NA
3 eas 3 3.7246 5.5153 0.5998 75 29 NA 1 NA 91
20 acs 2 1.4734 0.1808 0.4304 5 39 0.5665 1 NA NA
50 ras 3 2.2804 4.5294 0.5508 18 32 NA 1 12 NA
34 acs 3 2.2044 2.4923 0.7243 12 29 0.4628 0 NA NA
47 acs 2 1.7046 6.3908 0.3256 5 36 0.2288 0 NA NA
86 ras 3 3.9808 3.4401 0.2191 20 25 NA 1 15 NA
74 mmas 3 1.1135 0.6356 0.3765 11 33 NA 1 NA NA
111 acs 2 1.2881 6.4311 0.5859 10 23 0.2126 0 NA NA
106 ras 3 3.2756 5.5035 0.9277 18 32 NA 0 10 NA
92 acs 2 1.6234 9.2153 0.1101 8 40 0.3412 0 NA NA
123 acs 2 1.0584 5.8121 0.5587 10 35 0.2575 0 NA NA
134 acs 2 1.6144 7.8972 0.1999 8 33 0.1415 1 NA NA
130 acs 2 1.5899 6.9391 0.5529 8 26 0.3796 0 NA NA
119 acs 2 1.4432 6.4746 0.4582 5 28 0.1931 0 NA NA
2023-10-01 13:48:55 BST: Testing results (column number is configuration ID in no particular order):

seeds 2 29 3 20 50 34 47 86 74 111 106 92 123 134 130 119
1t 1385446146 23609115 23432130 23400390 23403445 23383391 23439897 23380458 23455774 23355888 23382496 23417159 23404000 23492199 23425712 23427861 23413776
2t 1396979195 23327035 23208321 23186931 23288822 23181225 23228238 23265383 23201401 23279356 23188848 23171998 23314132 23244891 23207657 23155969 23188421
3t 448912041 23111373 23246027 23092265 23130590 23016527 23056027 23070519 23084400 23041364 23118905 23063197 23115280 23069064 23094536 23144447 23056579
4t 732530909 23128507 23159085 23119773 23290945 23063257 23095963 23110872 23151621 23053285 23133797 23139894 23148536 23101345 23084589 23095783 23112944
5t 947545849 23340533 23347633 23298513 23274844 23236071 23274590 23246473 23292452 23232446 23242908 23264111 23219377 23258853 23234207 23198304 23210902
6t 195435663 23532942 23470894 23496016 23533573 23423201 23538541 23526779 23500842 23497417 23525281 23464461 23510384 23454321 23478204 23476591 23454870
7t 798649446 23440321 23430267 23331305 23422861 23375048 23454558 23491515 23405251 23509688 23386282 23508539 23438775 23432504 23438511 23395808 23400737
8t 1692971486 23376183 23262794 23300201 23286312 23258955 23368034 23301552 23263607 23231022 23254721 23271971 23236607 23227995 23280863 23319754 23241563
9t 896414478 23375100 23296796 23375905 23293303 23293631 23428815 23292599 23376861 23314826 23312995 23369543 23333975 23355279 23352266 23375944 23339106
10t 1371337352 23222214 23163714 23110039 23126033 23089358 23198436 23080692 23146608 23106011 23092382 23087101 23108507 23096788 23126703 23046952 23066345
2023-10-01 13:48:55 BST: Finished testing

Figure 5: Sample text output of irace when evaluating on test instances.

28

• mu is a value used for calculating the minimum number of iterations.

• deterministic indicates if the target algorithm is assumed to be deterministic.

At each iteration, information about the progress of the execution is printed as follows:

• experimentsUsedSoFar is the number of experiments from the total budget that have been
used up to the current iteration.

• timeUsed is the execution time used so far in the experiments. Only available when reported
in the targetRunner (activate it with the maxTime option).

• remainingBudget is the number of experiments that have not been used yet.

• timeEstimate estimation of the mean execution time. This is used to calculate the remaining
budget when maxTime is used.

• currentBudget is the number of evaluations irace has allocated to the current iteration.

• nbConfigurations is the number of configurations irace will use in the current iteration. In
the first iteration, this number of configurations include the initial configurations provided; in
later iterations, it includes the elite configurations from the previous iterations.

After the iteration information, a table shows the progress of the iteration execution. Each
row of the table gives information about the execution of an instance in the race. The first column
contains a symbol that describes the results of the statistical test:

|x| No statistical test was performed for this instance. The options firstTest and eachTest
control on which instances the statistical test is performed.

|-| Statistical test performed and configurations have been discarded. The column Alive gives
an indication of how many configurations have been discarded.

|=| Statistical test performed and no configurations have been discarded. This means irace
needs to evaluate more instances to identify the best configurations.

|!| This indicator exists only for the elitist version of irace. It indicates that the statistical test
was performed and some elite configurations appear to show bad performance and could be
discarded but they are kept because of the elitist rules. See option elitist in Section 11
for more information.

Other columns have the following meaning:

Instance: Index of (instance,seed) pair executed. This number corresponds to the row
in the data frame returned by get_instanceID_seed_pairs(). See Section 9.2 for more
information. This index is different from the instance ID passed to targetRunner.

Bound: Only when capping is enabled. Execution time used as bound for the execution of new
candidate configurations.

Alive: Number of configurations that have not been discarded after the statistical test was
performed.

Best: ID of the best configuration according to the instances seen so far in this race (i.e., not
including previous iterations).

29

#--
irace: An implementation in R of (Elitist) Iterated Racing
Version: 3.9.0.9000.08fb612d
Copyright (C) 2010-2020
Manuel Lopez-Ibanez <manuel.lopez-ibanez@manchester.ac.uk>
Jeremie Dubois-Lacoste
Leslie Perez Caceres <leslie.perez.caceres@ulb.ac.be>
#
This is free software, and you are welcome to redistribute it under certain
conditions. See the GNU General Public License for details. There is NO
WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
irace builds upon previous code from the race package:
race: Racing methods for the selection of the best
Copyright (C) 2003 Mauro Birattari
#--
installed at: /home/manu/R/x86_64-pc-linux-gnu-library/4.1/irace
called with: --parallel 2
2024-07-26 16:40:13 BST: Reading parameter file '/home/manu/work/irace/git/devel-examples/vignette-example/parameters.txt'.
2024-07-26 16:40:13 BST: 1 expression(s) specifying forbidden configurations read.
2024-07-26 16:40:13 BST: Read 1 configuration(s) from file '/home/manu/work/irace/git/devel-examples/vignette-example/default.txt'
2024-07-26 16:40:13 BST: Initialization
Elitist race
Elitist new instances: 1
Elitist limit: 2
nbIterations: 5
minNbSurvival: 5
nbParameters: 11
seed: 687542627
confidence level: 0.95
budget: 1000
mu: 5
deterministic: FALSE

2024-07-26 16:40:13 BST: Iteration 1 of 5
experimentsUsedSoFar: 0
remainingBudget: 1000
currentBudget: 200
nbConfigurations: 33
Markers:

x No test is performed.
c Configurations are discarded only due to capping.
- The test is performed and some configurations are discarded.
= The test is performed but no configuration is discarded.
! The test is performed and configurations could be discarded but elite configurations are preserved.
. All alive configurations are elite and nothing is discarded.

+-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+
| | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar|
+-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+
x	1	33	10	23189189.00	33	00:01:28	NA	NA	NA
x	2	33	5	23331092.00	66	00:01:26	+0.97	0.99	0.0041
x	3	33	10	23317166.33	99	00:01:26	+0.96	0.98	0.0085
x	4	33	10	23225711.00	132	00:01:26	+0.96	0.97	0.0077
-	5	2	10	23215310.80	165	00:01:26	+0.20	0.36	0.4000
+-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+
Best-so-far configuration: 10 mean value: 23215310.80
Description of the best-so-far configuration:

.ID. algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants time .PARENT.
10 10 acs 3 1.6745 4.0179 0.6924 16 29 0.9348 1 NA NA 5 NA

2024-07-26 16:47:29 BST: Elite configurations (first number is the configuration ID; listed from best to worst according to the sum of ranks):
algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants time

10 acs 3 1.6745 4.0179 0.6924 16 29 0.9348 1 NA NA 5
5 acs 2 3.2370 0.8929 0.1356 9 49 0.1223 0 NA NA 5
2024-07-26 16:47:29 BST: Iteration 2 of 5
experimentsUsedSoFar: 165
remainingBudget: 835

Figure 6: Sample text output of irace.

30

Mean best: Mean cost value of the best configuration across the instances seen so far in this
race (not globally). Equivalent to the concept of “iteration-best” in other algorithms.

Exp so far: Number of experiments performed so far.

W time: Wall-clock time spent on this instance.

rho, KenW, and Qvar: Spearman’s rank correlation coefficient rho, Kendall’s concordance
coefficient W, and a variance measure described in [16], respectively, of the configurations
across the instances evaluated so far in this iteration. These measures evaluate how consistent
is the performance of the configurations across the instances. Values close to 1 for rho and
KenW and values close to 0 for Qvar indicate that the scenario is highly homogeneous. For
heterogeneous scenarios, we provide advice in Section 10.5.

Finally, irace outputs the best configuration found and a list of the elite configurations. The
elite configurations are configurations that did not show statistically significant difference during
the race; they are ordered according to their mean performance on the executed instances.

9.2 R data file (logFile)
The R data file created by irace (by default as irace.Rdata, see option logFile) contains an
object called iraceResults. You can load this file in the R console with:

logfile <- system.file(package="irace", "exdata", "irace-acotsp.Rdata", mustWork=TRUE)
iraceResults <- read_logfile(logfile)

The iraceResults object is a list, and the elements of a list can be accessed in R by using
the $ or [[]] operators:

> iraceResults$irace_version

[1] "3.9.0.9000.08fb612d"

The iraceResults list contains the following elements:

• scenario: The scenario R object containing the irace options used for the execution. See
Section 11 and the help of the irace package; open an R console and type: ?defaultScenario.
See Section 11 for more information.

• parameters: The parameters R object containing the description of the target algorithm
parameters. See Section 5.1.

• allConfigurations: The target algorithm configurations generated by irace. This object is
a data frame, each row is a candidate configuration; the first column (.ID.) indicates the
internal identifier of the configuration; the final column (.PARENT.) is the identifier of the
configuration from which the current configuration was sampled; and the remaining columns
correspond to the parameter values; each column is named as the parameter name specified
in the parameter object.

> head(iraceResults$allConfigurations)

31

.ID. algorithm localsearch alpha beta rho ants nnls q0
1 1 as 0 1.000 1.0000 0.9500 10 NA NA
2 2 as 3 4.487 3.3929 0.8781 90 38 NA
3 3 eas 1 1.987 8.3929 0.3831 20 15 NA
4 4 mmas 0 0.737 5.8929 0.6306 42 NA NA
5 5 acs 2 3.237 0.8929 0.1356 9 49 0.1223
6 6 as 1 2.612 4.6429 0.7543 29 9 NA

dlb rasrank elitistants time .PARENT.
1 <NA> NA NA 5 NA
2 1 NA NA 5 NA
3 0 NA 107 5 NA
4 <NA> NA NA 5 NA
5 0 NA NA 5 NA
6 0 NA NA 5 NA

• allElites: A list that contains one element per iteration. Each element contains the internal
identifier of the elite candidate configurations of the corresponding iteration (identifiers
correspond to allConfigurations$.ID.).

> print(iraceResults$allElites)

[[1]]
[1] 10 5

[[2]]
[1] 45 44

[[3]]
[1] 45 65 76 85 44

[[4]]
[1] 108 45 112 103 94

[[5]]
[1] 108 119 141 138 45

[[6]]
[1] 108 119 141 138 146

[[7]]
[1] 108 119 146 138 141

[[8]]
[1] 108 119

The configurations are ordered by mean performance, that is, the ID of the best configuration
corresponds to the first ID. To obtain the values of the parameters of all elite configurations
found by irace use:

32

> logfile <- system.file(package="irace", "exdata", "irace-acotsp.Rdata", mustWork=TRUE)
> getFinalElites(logfile, n = 0)

.ID. algorithm localsearch alpha beta rho ants nnls q0
108 108 acs 3 1.7392 1.9072 0.7255 41 11 0.4645
119 119 acs 3 1.8415 1.5342 0.2492 41 10 0.7389

dlb rasrank elitistants time .PARENT.
108 1 NA NA 5 45
119 1 NA NA 5 103

• iterationElites: A vector containing the best candidate configuration ID of each iteration.
The best configuration found corresponds to the last one of this vector.

> print(iraceResults$iterationElites)

[1] 10 45 45 108 108 108 108 108

One can obtain the full configuration with:

> last <- length(iraceResults$iterationElites)
> id <- iraceResults$iterationElites[last]
> getConfigurationById(iraceResults, ids = id)

.ID. algorithm localsearch alpha beta rho ants nnls q0
108 108 acs 3 1.7392 1.9072 0.7255 41 11 0.4645

dlb rasrank elitistants time .PARENT.
108 1 NA NA 5 45

• rejectedConfigurations: A vector containing the rejected configurations IDs. These corre-
spond to configurations that produced failed executions and were ignored by irace during the
configuration process. See Section 10.8 to enable the detection of such configurations.

• experiments: A matrix with configurations as columns and instances as rows. Column names
correspond to the internal identifier of the configuration (allConfigurations$.ID.). The
results of a particular configuration can be obtained using:

> # As an example, we use the best configuration found
> best_config <- getFinalElites(iraceResults, n = 1)
> best_id <- as.character(best_config$.ID.)
> # Obtain the results of the best configuration
> all_exp <- iraceResults$experiments[, best_id]
> # all_exp is a vector and names(all_exp) is the (instance,seed) index.
> all_exp

1 2 3 4 5 6 7
23107855 23436899 23186605 22884403 23183461 23457257 23097599

8 9 10 11 12 13 14

33

23258325 23031551 23286524 23146002 23238245 22855091 23140505
15 16 17

23465587 23043711 23351484

> # Obtain the results of the first and best configurations
> all_exp <- iraceResults$experiments[, c("1", best_id)]
> # all_exp is a matrix: colnames(all_exp) is configurationID and
> # rownames(all_exp) is the (instance,seed) index.
> all_exp

1 108
1 28407696 23107855
2 28402347 23436899
3 29166659 23186605
4 28417102 22884403
5 28823388 23183461
6 NA 23457257
7 NA 23097599
8 NA 23258325
9 NA 23031551
10 NA 23286524
11 NA 23146002
12 NA 23238245
13 NA 22855091
14 NA 23140505
15 NA 23465587
16 NA 23043711
17 NA 23351484

When a configuration was not executed on an instance, its value is NA. A configuration may
not be executed on an instance because: (1) it was not created yet when the instance was
used, or (2) it was discarded by the statistical test and not executed on subsequent instances,
or (3) the race terminated before this instance was considered.
Row names correspond to the row index of the (instance,seed) pairs in the data frame
returned by get_instanceID_seed_pairs(). The instanceID and seed used for a particular
experiment can be obtained with:

> # As an example, we get instanceID, seeds and instances of the experiments
> # of the best configuration.
> # We could get the indexes of the instances on which at least one
> # configuration was executed:
> pair_index <- which(apply(!is.na(all_exp), 1L, any))
> # or the instances on which all configurations were executed:
> pair_index <- which(apply(!is.na(all_exp), 1L, all))
> # but in this example we get the indexes of the instances executed for
> # the best configuration.
> pair_index <- which(!is.na(all_exp[, best_id]))
> instanceID <- get_instanceID_seed_pairs(iraceResults)[["instanceID"]][pair_index]

34

> # or get the seeds
> get_instanceID_seed_pairs(iraceResults)[["seed"]][pair_index]

[1] 2062824562 1315404608 718135261 1756600186 1084471193 1163321042
[7] 1318942249 424612740 507331628 1640400685 1364449617 752897771

[13] 1025182031 696942227 1699723808 410855221 1502438571

> # or obtain the actual instances.
> iraceResults$scenario$instances[instanceID]

[1] "./instances/1000-7.tsp" "./instances/1000-1.tsp"
[3] "./instances/1000-9.tsp" "./instances/1000-8.tsp"
[5] "./instances/1000-2.tsp" "./instances/1000-10.tsp"
[7] "./instances/1000-3.tsp" "./instances/1000-4.tsp"
[9] "./instances/1000-6.tsp" "./instances/1000-5.tsp"

[11] "./instances/1000-2.tsp" "./instances/1000-4.tsp"
[13] "./instances/1000-8.tsp" "./instances/1000-3.tsp"
[15] "./instances/1000-1.tsp" "./instances/1000-7.tsp"
[17] "./instances/1000-10.tsp"

> # If the instances are of atomic type (integers, floating-point numbers or
> # character strings), the above is similar to:
> get_instanceID_seed_pairs(iraceResults, index = pair_index, instances=TRUE)

instanceID seed instance
<int> <int> <char>

1: 7 2062824562 ./instances/1000-7.tsp
2: 1 1315404608 ./instances/1000-1.tsp
3: 9 718135261 ./instances/1000-9.tsp
4: 8 1756600186 ./instances/1000-8.tsp
5: 2 1084471193 ./instances/1000-2.tsp
6: 10 1163321042 ./instances/1000-10.tsp
7: 3 1318942249 ./instances/1000-3.tsp
8: 4 424612740 ./instances/1000-4.tsp
9: 6 507331628 ./instances/1000-6.tsp

10: 5 1640400685 ./instances/1000-5.tsp
11: 2 1364449617 ./instances/1000-2.tsp
12: 4 752897771 ./instances/1000-4.tsp
13: 8 1025182031 ./instances/1000-8.tsp
14: 3 696942227 ./instances/1000-3.tsp
15: 1 1699723808 ./instances/1000-1.tsp
16: 7 410855221 ./instances/1000-7.tsp
17: 10 1502438571 ./instances/1000-10.tsp

• experimentLog: A matrix with columns iteration,instance,configuration. This matrix
contains the log of all the experiments that irace performs during its execution. The instance
column refers to the index of the data frame returned by get_instanceID_seed_pairs().

35

When capping is enabled a column bound is added to log the execution bound applied for
each execution.

• softRestart: A logical vector that indicates if a soft restart was performed on each iteration.
If FALSE, then no soft restart was performed. See option softRestart in Section 11.

• state: A list that contains the state of irace, the recovery (Section 8) is done using the
information contained in this object. The probabilistic model of the last elite configurations
can be found here by doing:

> # As an example, we get the model probabilities for the
> # localsearch parameter.
> iraceResults$state$model["localsearch"]

$localsearch
$localsearch$`108`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`119`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`141`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`138`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`146`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

> # The order of the probabilities corresponds to:
> iraceResults$scenario$parameters$domains$localsearch

[1] "0" "1" "2" "3"

The example shows a list that has one element per elite configuration (ID as element name).
In this case, localsearch is a categorical parameter and it has a probability for each of its
values.

• testing: A list that contains the testing results. The list contains the following elements:

– experiments: Matrix of experiments in the same format as the
iraceResults$experiments matrix. The column names indicate the candidate
configuration identifier and the row names contain the name of the instances.

> # Get the results of the testing
> iraceResults$testing$experiments

10 5 45 44 65 76 85
1t 23428468 23611720 23335072 23418902 23366444 23354462 23384148

36

2t 23392230 23303742 23214064 23299315 23153951 23206569 23200275
3t 23086793 23268934 23025144 23108338 23032681 23081589 23058615
4t 23104893 23313512 23072521 23159865 23098524 23108077 23101026
5t 23247804 23393004 23232877 23260905 23247440 23286403 23203563
6t 23468768 23611004 23501132 23432133 23414990 23498047 23443069
7t 23516548 23463318 23421431 23467354 23360479 23405867 23325936
8t 23373850 23345624 23279921 23296563 23265183 23306797 23264743
9t 23379543 23499305 23357416 23536070 23336107 23342437 23343394
10t 23044975 23100683 23084329 23139348 23096753 23039784 23113793

108 112 103 94 119 141 138
1t 23409850 23401463 23366982 23373177 23396273 23331449 23466607
2t 23214663 23145147 23149476 23195844 23167440 23230580 23137859
3t 23098408 23085992 23098849 23063345 23028198 23079569 23084634
4t 23033254 23090507 23055489 23082011 23027180 23066772 23098211
5t 23225636 23256739 23204694 23241322 23172494 23195335 23239104
6t 23411674 23418225 23404301 23481524 23456813 23421776 23410287
7t 23344578 23406818 23351218 23401264 23330841 23338088 23367653
8t 23260374 23229259 23233504 23249694 23219584 23279206 23288807
9t 23311237 23281159 23328219 23318124 23309017 23285611 23328544
10t 23051231 23054564 23110133 23071944 23041882 23055953 23110158

146
1t 23368936
2t 23213402
3t 23098011
4t 23047228
5t 23265720
6t 23418507
7t 23356813
8t 23267451
9t 23328301
10t 23051498

– seeds: The seeds used for the experiments, each seed corresponds to each instance in the
rows of the test experiments matrix.

> # Get the seeds used for testing
> iraceResults$testing$seeds

1t 2t 3t 4t 5t 6t
1569194624 2141208548 1648754028 1116160272 1682044763 1200580020

7t 8t 9t 10t
652316604 371492673 1144046723 754704287

In the example, instance 1000-1.tsp is executed with seed 1569194624.

9.3 Analysis of results
The final configurations returned by irace are the elites of the final race. They are reported in
decreasing order of performance, that is, the best configuration is reported first.

37

If testing is performed, you can further analyze the resulting best configurations by performing
statistical tests in R:

> results <- iraceResults$testing$experiments
> # Wilcoxon paired test
> conf <- gl(ncol(results), # number of configurations
+ nrow(results), # number of instances
+ labels = colnames(results))
> pairwise.wilcox.test (as.vector(results), conf, paired = TRUE, p.adj = "bonf")

Pairwise comparisons using Wilcoxon signed rank exact test

data: as.vector(results) and conf

10 5 45 44 65 76 85 108 112 103 94 119 141
5 1.00 - - - - - - - - - - - -
45 1.00 0.21 - - - - - - - - - - -
44 1.00 1.00 1.00 - - - - - - - - - -
65 1.00 0.21 1.00 0.21 - - - - - - - - -
76 1.00 0.21 1.00 1.00 1.00 - - - - - - - -
85 1.00 0.41 1.00 0.41 1.00 1.00 - - - - - - -
108 1.00 0.21 1.00 0.21 1.00 1.00 1.00 - - - - - -
112 1.00 0.21 1.00 0.21 1.00 1.00 1.00 1.00 - - - - -
103 1.00 0.41 1.00 0.21 1.00 1.00 1.00 1.00 1.00 - - - -
94 1.00 0.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - -
119 0.21 0.21 1.00 0.62 1.00 1.00 1.00 1.00 1.00 1.00 0.62 - -
141 0.62 0.21 1.00 0.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -
138 1.00 0.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
146 1.00 0.21 1.00 0.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

138
5 -
45 -
44 -
65 -
76 -
85 -
108 -
112 -
103 -
94 -
119 -
141 -
138 -
146 1.00

P value adjustment method: bonferroni

The Kendall concordance coefficient (W) and the Spearman’s rho can be applied over data
that has the characteristics of the data obtained in the testing, that is a full matrix where all
configurations are executed in all instances. W can show if the configurations tested have an

38

homogeneous performance on the used instances set. If evidence of an heterogeneous scenario
found we recommend to make some adjustments in the irace options as described in Section 10.5.

> irace:::concordance(iraceResults$testing$experiments)

$kendall.w
[1] 0.4191429

$spearman.rho
[1] 0.3546032

It is also possible, as shown in Fig. 7, to plot the performance on the test set of the best-so-far
configuration over the number of experiments as follows:

Get summary data from the logfile.
irs <- irace_summarise(iraceResults)
Get number of iterations
iters <- irs$n_iterations
Get number of experiments (runs of target-runner) up to each iteration
fes <- cumsum(table(iraceResults$state$experiment_log[["iteration"]]))
Get the mean value of all experiments executed up to each iteration
for the best configuration of that iteration.
elites <- as.character(iraceResults$iterationElites)
values <- colMeans(iraceResults$testing$experiments[, elites])
stderr <- function(x) sqrt(var(x)/length(x))
err <- apply(iraceResults$testing$experiments[, elites], 2L, stderr)
plot(fes, values, type = "s",

xlab = "Number of runs of the target algorithm",
ylab = "Mean value over testing set", ylim=c(23000000,23500000))

points(fes, values, pch=19)
arrows(fes, values - err, fes, values + err, length=0.05, angle=90, code=3)
text(fes, values, elites, pos = 1)

The irace package also provides an implementation of the ablation method [6]. See Section 10.9.

Finally, more advanced visualizations of the behavior of irace are provided by the ACVIZ
software package [4], which is available at https://github.com/souzamarcelo/acviz. See an
example in Fig. 8.

10 Advanced topics
10.1 Tuning budget
Before setting the budget for a run of irace, please consider the number of parameters that need
to be tuned, available processing power and available time. The optimal budget depends on the
difficulty of the tuning scenario, the size of the parameter space and the heterogeneity of the
instances. Typical values range from 1 000 to 100 000 runs of the target algorithm, although
smaller and larger values are also possible. Currently, irace does not detect whether the given
budget allows generating all possible configurations. In such a case, the use of iterated racing is
unnecessary: One can simply perform a single race of all configurations (see FAQ in Section 12.11).

39

https://github.com/souzamarcelo/acviz

200 400 600 800 1000

23
00

00
00

23
10

00
00

23
20

00
00

23
30

00
00

23
40

00
00

23
50

00
00

Number of runs of the target algorithm

M
ea

n
va

lu
e

ov
er

 te
st

in
g

se
t

10

45 45
108 108 108 108108

Figure 7: Testing set performance of the best-so-far configuration over number of experiments.
Label of each point is the configuration ID.

Irace provides two options for setting the total tuning budget (maxExperiments and maxTime).
The option maxExperiments limits the number of executions of targetRunner performed by
irace. The option maxTime limits the total time of the targetRunner executions. When this
latter option is used, targetRunner must return the evaluation cost together with the execution
time ("cost time").

When the goal is to minimize the computation time of an algorithm, and you wish to use maxTime
as the tuning budget, targetRunner must return the time also as the evaluation cost, that is,
return the time twice as "time time".

When using targetEvaluator and using maxTime as tuning budget, targetRunner just returns the
time ("time") and targetEvaluator returns the cost.

When using maxTime, irace estimates the execution time of each targetRunner execution
before the configuration. The amount of budget used for the estimation is set with the option
budgetEstimation (default is 2%). The obtained estimation is adjusted after each iteration using
the obtained results and it is used to estimate the number of experiments that can be executed.
Internally, irace uses the number of remaining experiments to adjust the number of configurations
tested in each race.

40

7 8 9 12 15 17 19 21
Instances evaluated

1

34
3

61
4

88
8

12
59

16
15

18
12

19
00

19
80

Candidate evaluations

10 3

10 2

10 1

100

Re
la

tiv
e

de
vi

at
io

n

regular config.
elite config.

final elite config.
best found config.

iteration
median iteration

median elites

Figure 8: Visualization produced by ACVIZ [4].

10.2 Multi-objective tuning
Currently, irace only optimizes one cost value at a time, which can be solution cost, computation
time or any other objective that is returned to irace by the targetRunner. If the target algorithm
is multi-objective, it will typically return not a single cost value, but a set of objective vectors
(typically, a Pareto front). For tuning such a target algorithm with irace, there are two alternatives.
If the algorithm returns a single vector of objective values, they can be aggregated into one single
number by using, for example, a weighted sum. Otherwise, if the target algorithm returns a set
of objective vectors, a unary quality metric (e.g., the hypervolume) may be used to evaluate the
quality of the set.3

The use of aggregation or quality metrics often requires normalizing the different objectives.
If normalization bounds are known a priori for each instance, normalized values can be computed
by targetRunner. Otherwise, the bounds may be dynamically computed while running irace, by
using targetEvaluator. In this case, targetRunner will save the output of the algorithm, then
the first call to targetEvaluator will examine the output produced by all calls to targetRunner
for the same instance, update the normalization bounds and return the normalized output.
Subsequent calls to targetEvaluator for the same instance will simply return the normalized
output. A similar approach can be used to dynamically compute the reference points or sets
often required by unary quality metrics.

For more information about defining a targetEvaluator, see Section 5.3. Examples of tuning
a multi-objective target algorithm using the hypervolume can be found in the examples at
$IRACE_HOME/examples/hypervolume and $IRACE_HOME/examples/moaco.

3An implementation is publicly available at http://lopez-ibanez.eu/hypervolume [7]

41

http://lopez-ibanez.eu/hypervolume

10.3 Tuning for minimizing computation time
When using irace for tuning algorithms that only report computation time to reach a target,
targetRunner should return the execution time of a configuration instead of solution cost. When
using maxTime as the budget, this means that targetRunner must return twice the execution
time since the first value is the minimization objective and the second value is used to track the
budget consumed.

Starting from version 3.0, irace includes an elitist racing procedure that implements an
adaptive capping mechanism [15]. Adaptive capping [8] is a configuration technique that
avoids the execution of long runs of the target algorithm, focusing the configuration budget in
the evaluation of the best configurations found. This is done by bounding the execution time of
each configuration based on the best performing candidate configurations.

To use adaptive capping, the capping option must be enabled and the elitist irace option
must be selected. When evaluating candidate configurations on an instance, irace calculates an
execution bound based on the execution times of the elite configurations. The boundType option
defines how the performance of the elite configurations is defined to obtain the execution bound.
The default value of boundType calculates the performance (ps

i) of each elite configuration (s) as
the mean execution time of the instances already executed in the race and the currently executed
instance (i). The cappingType option specifies the measure used to obtain the elite configurations
bound. By default, the execution bound is calculated as the median of the execution times of the
elite configurations:

bi = Medianθs∈Θelite{ps
i } (1)

The execution bound for new configurations (j) is calculated by multiplying the elite config-
urations bound by the number of instances (i) in the execution list and subtracting the mean
execution time of the instances executed by the candidate:

k
′j
i = bi · i + bmin − pj

i−1 · (i − 1) (2)

A small constant bmin is added to account for time measurements errors. These settings are
also used to apply a dominance elimination criterion together with the statistical test elimination.
The domination criterion is defined as:

bi + bmin < pj
i (3)

When elite configurations dominate new configurations, these are eliminated from the race.

The default statistical test when capping is enabled is t-test. This test is more appropriate to
configure algorithms for optimizing runtime (see Section 10.6).

The execution bound is constantly adjusted by irace based on the best configurations times,
nevertheless, a maximum execution time (bmax) is never exceeded. This maximum execution time
must be defined in the configuration scenario when capping is enabled. To specify the maximum
execution bound for the target runner executions use the boundMax option. The final execution
bound (kj

i) is calculated by:

kj
i =

bmax if k

′j
i > bmax,

min{bi, bmax} if k
′j
i ≤ 0,

k
′j
i otherwise;

(4)

Additionally, the boundDigits option defines the precision of the time bound provided by
irace, the default setting is 0.

42

Timed out executions occur when the maximum execution bound (boundMax) is reached and
the algorithm has not achieved successful termination or a defined quality goal. In this case,
it is a common practice to apply a penalty known as PARX, in which timeouts are penalized
by multiplying boundMax by a constant X. The constant X may be set using the boundPar
option. Bounded executions are executions that do not achieve successful termination or a defined
quality goal in the execution bound (kj

i) set by irace, which is smaller than boundMax. The
boundAsTimeout option replaces the evaluation of bounded executions by the boundMax value.
More details about the implementation of adaptive capping can be found in Pérez Cáceres et al.
[15].

Note that bounded executions are not timed out executions and thus, they will not be penalized
by PARX.

Penalized evaluations of timed out and bounded executions are only used for the elimination tests
and the comparison between the quality of configurations. To calculate execution bounds and
computation budget consumed, irace uses only unpenalized execution times. The unpenalized
execution time must be provided by the target runner or target evaluator as described in
Section 5.2 and Section 5.3 .

More advanced capping methods that are applicable to minimizing solution cost are available
when combining irace with the capopt package described by De Souza et al. [5].

10.4 Hyper-parameter optimization of machine learning methods
The irace package can also be used for model selection and hyper-parameter optimization of
machine learning (ML) methods. We will next explain a possible setup for one given dataset and
using 10-fold cross-validation (CV). Generalizing to multiple datasets and different resampling
strategies, e.g. leave-one-out, is straightforward.

First, split the dataset into training, to be used by irace, and testing, to be used for evaluating
the performance of the configuration returned by irace. A typical split could be 70% and 30%,
respectively.

The training set is used by irace to perform 10-fold CV, that is, the data is split into 10 folds.
A single run of the targetRunner will use 9 folds for training and the remaining fold for validation.
Splitting the data into folds can be done at each call of targetRunner or before running irace,
however, it is important that the split is always the same for every call of the targetRunner, i.e.,
the content of the folds does not change, only which folds are used for training and validation
will change.

The setup of irace should be as follows:

• trainInstancesFile="train-instances.txt", where this file contains one number per line
from 1 to 10. This number will tell the targetRunner which fold should be used for validation.

• trainInstancesDir="", because the folds are the “instances” and you do not have actual
instance files. If you want to pass the name of the dataset to the targetRunner, you can
specify it either at each line of "train-instances.txt", directly in the targetRunner, or as
a fixed parameter in the parameterFile.

• deterministic=1 unless it really makes sense to train more than once the same ML model
on the same data. If it makes sense, then your targetRunner should use the seed passed by
irace to seed the ML model before training.

43

• sampleInstances=0 because the folds should already be generated by randomly sampling the
dataset.

• testType="t-test because the performance metrics in ML are typically the mean of the CV
results, which assumes that the performance are close to normally distributed.

• firstTest=2 because irace should discard configurations very aggressively looking for maxi-
mum generality.

Finally, your targetRunner needs to be able to do the following:

• Receive from irace the hyper-parameter settings, the dataset name and a fold number (the
“instance”). Let us use fold 3 as an example.

• Train the ML model on the whole training set minus fold 3, then validate (score) the model
on fold 3 and return the score to irace (negated if the score must be maximized, because irace
assumes minimization). Since each fold is different, each instance should give a different result.
Each row in the table printed by irace should print something different; otherwise, something
is wrong in your setup.

The above is actually 10 times faster than doing 10-fold CV for each call to targetRunner,
thus, you should assign to irace 10 times the budget than what would be assigned to other
methods that do a complete 10-fold CV at each step.

10.5 Heterogeneous scenarios
We classify a scenario as homogeneous when the target algorithm has a consistent performance
regarding the instances; roughly speaking, good configurations tend to perform well and bad con-
figurations tend to perform poorly on all instances of the problem. By contrast, in heterogeneous
scenarios, the target algorithm has an inconsistent performance on different instances, that is,
some configurations perform well for a subset of the instances, while they perform poorly for a
different subset.

When facing a heterogeneous scenario, the first question should be whether the objective
of tuning is to find configurations that perform reasonably well over all instances, even if that
configuration is not the best ones in any particular instance (a generalist). If this is not the
goal, then it would be better to partition instances into more similar subsets and execute irace
separately on each subset. This will lead to a portfolio of algorithm configurations, one for each
subset, and algorithm selection techniques can be used to select the best configuration from the
portfolio when facing a new instance.

To make sure irace is not misled by results on few instances, it may be useful to increase the
number of instances executed before doing a statistical test using the option firstTest, e.g.,
--first-test 10 (default value is 5), in order to see more instances before discarding configura-
tions. The option elitistNewInstances in elitist irace (option elitist) can be used to increase
the number of new instances executed in each iteration, e.g., --elitist-new-instances 5
(default value is 1).

If finding an overall good configuration for all the instances is the objective, then we recommend
that instances are randomly sampled (option sampleInstances), unless one can provide the
instances in a particular order that does not bias the tuning towards any subset.

If instances are easily categorized in different classes, then we recommend to create “blocks”
of instances in trainInstancesFile, where each block should contain one instance from each
class. Then set the option blockSize to the number of classes within each block, so that irace

44

will always see a complete block of instances before eliminating configurations. The value of
blockSize will multiply the effective values of firstTest and eachTest. Randomly sampling
instances (sampleInstances=1) will randomly sample the blocks but not break the blocks.

While executing irace, the homogeneity of the scenario can be observed by examining the
values of Spearman’s rank correlation coefficient and Kendall’s concordance coefficient in the text
output of irace. See Section 9.1 for more information.

10.6 Choosing the statistical test
The statistical test used in irace identifies statistically bad performing configurations that can be
discarded from the race in order to save budget. Different statistical tests use different criteria to
compare the cost of the configurations, which has an effect on the tuning results.

Irace provides two types of statistical tests (option testType). Each test has different
characteristics that are beneficial for different goals:

• Friedman test (F-test): This test uses the ranking of the configurations to analyze the
differences between their performance. This makes the test suitable for scenarios where the
scale of the performance metric is not as important to assess configurations as their relative
ranking. This test is also indicated when the distribution of the mean performances deviates
greatly from a normal distribution. For example, the ranges of the performance metric on
different instances may be completely difference and comparing the performance of different
configurations using the mean over multiple instances may be deceiving. We recommend to
use the F-test (default when capping is not enabled) when tuning for solution cost and
whenever the best performing algorithm should be among the best in as many instances as
possible.

• Student’s t-test (t-test): This test uses the mean performance of the configurations to
analyze the differences between the configurations.4 This makes the test suitable for scenarios
where the differences between values obtained for different instances are relevant to assess
good configurations. We recommend using t-test, in particular, when the target algorithm is
minimizing computation time and, in general, whenever the best configurations should obtain
the best average solution cost.

The confidence level of the tests may be adjusted by using the option confidence. Increasing
the value of confidence leads to a more strict statistical test. Keep in mind that a stricter test
will require more budget to identify which configurations perform worse. A less strict test discards
configurations faster by requiring less evidence against them and, therefore, it is more likely to
discard good configurations.

10.7 Complex parameter space constraints
Some parameters may have complex dependencies. Ideally, parameters should be defined in the
way that is more likely to help the search performed by irace. For example, when tuning a branch
and bound algorithm, one may have the following parameters:

• branching (b) that takes values in {0,1,2,3}, where 0 indicates no branching will be used
and the rest are different types of branching.

4The t-test does not require that the performance values follow a normal distribution, only that the distribution
of sample means does. In practice, the t-test is robust despite large deviations from the assumptions.

45

• stabilization (s) that takes values in {0,1,2,3,4,5,6,7,8,9,10}, of which for b=0 only
{0,1,2,3,4,5} are relevant.

In this case, it is not possible to describe the parameter space by defining only two parameters
for irace. An extra parameter must be introduced as follows:

name label type range condition
b "-b " c (0,1,2,3)
s1 "-s " c (0,1,2,3,4,5) | b == "0"
s2 "-s " c (0,1,2,3,4,5,6,7,8,9,10) | b != "0"

Parameters whose values depend on the value of other parameters may also require using extra
parameters or changing the parameters and processing them in targetRunner. For example,
given the following parameters:

• Population size (p) takes the integer values [1, 100].

• Selection size (s) takes the same values but no more than the population size, that is [1,p].

In this case, it is possible to describe the parameters p and s using surrogate parameters for
irace that represent a ratio of the original interval as follows:

name label type range
p "-p " i (1,100)
s_f "-s " r (0.0,1.0)

and targetRunner must calculate the actual value of s as min(max(round(s_f · p, 1)), 100). For
example, if the parameter p has value 50 and the surrogate parameter s_f has value 0.3, then s
will have value 15.

The processing within targetRunner can also split and join parameters. For example, assume
the following parameters:

name label type range
m "-m " i (1,250)
e "-e " r (0.0,2.0)

These parameters could be used to define a value m · 10e for another parameter (--strength)
not known by irace. Then, targetRunner takes care of parsing -m and -e, computing the strength
value and passing the parameter --strength together with its value to the target algorithm.

More complex parameter space constraints may be implemented by means of the repairConfiguration
function (Section 5.6).

10.8 Unreliable target algorithms and immediate rejection
There are some situations in which the target algorithm may fail to execute correctly. By default,
irace stops as soon as a call to targetRunner or targetEvaluator fails, which helps to detect
bugs in the target algorithm. Sometimes the failure cannot be fixed because it is due to system
problems, network issues, memory limits, bugs for which no fix is available, or fixing them is
impossible because there is no access to the source code.

In those cases, if the failure is caused by random errors or transient system problems, one
may wish to ignore the error and try again the same call in the hope that it succeeds. The option
targetRunnerRetries indicates the number of times a targetRunner execution is repeated if it
fails. Use this option only if you know additional repetitions could be successful.

46

If the target algorithm consistently fails for a particular set of configurations, these configura-
tions may be declared as forbidden (Section 5.1.5) so that irace avoids them. On the other hand,
if the configurations that cause the problem are unknown, the targetRunner should return Inf
so that irace immediately rejects the failing configuration. This immediate rejection should be
used with care according to the goals of the tuning. For example, a configuration that crashes on
a particular instance, e.g., by running out of memory, might still be considered acceptable if it
gives very good results on other instances. The configurations which were rejected during the
execution of irace are saved in the Rdata output file (see Section 9.2).

If the configuration budget is specified in total execution time (maxTime option), immediate
rejected executions must provide the cost and time (which must be Inf 0). Nevertheless, rejected
configurations will be excluded from the execution time estimation and the execution bound
calculation.

10.9 Ablation Analysis
The ablation method [6] takes two configurations (source and target) and generates a sequence of
configurations that differ between each other just in one parameter, where parameter values in
source are replaced by values from target. The sequence can be seen as a “path” from the source
to the target configuration. This can be used to find new better “intermediate” configurations or
to analyse the impact of the parameters in the performance.

To perform ablation, you can use the ablation() R function or the ablation command-
line executable (see more details below). You may specify the IDs of the source and target
configurations. By default, the source is taken as the first configuration evaluated by irace and
the target as the best overall configuration found. Use the function plotAblation to visualize
the ablation results (Fig. 9).

ablog <- ablation("irace.Rdata", src = 1, target = 60)
plotAblation(ablog)

The function returns a list containing the following elements:

configurations: A dataframe of configurations tested during ablation.

instances: The instances used for the ablation.

scenario: Scenario options provided by the user.

trajectory: Best configuration IDs at each step of the ablation.

best: Best overall configuration found.

We also provide a command-line executable (ablation.exe in Windows) that allows you to
perform ablation without launching R. It is installed in the same location as the irace command-line
executable and has the following options:

#--
ablation: An implementation in R of Ablation Analysis
Version: unknown
Copyright (C) 2020--2022
Manuel Lopez-Ibanez <manuel.lopez-ibanez@manchester.ac.uk>
Leslie Perez Caceres <leslie.perez.caceres@ulb.ac.be>

47

5
10

15
20

R
an

k
pe

r
in

st
an

ce

so
ur

ce

lo
ca

ls
ea

rc
h=

3
nn

ls
=

11
dl

b=
1

al
go

rit
hm

=
ac

s
q0

=
0.

46
45

be
ta

=
1.

90
72

rh
o=

0.
72

55

al
ph

a=
1.

73
92

an
ts

=
41

5
10

15
20

Figure 9: Example of plot generated by plotAblation().

#
This is free software, and you are welcome to redistribute it under certain
conditions. See the GNU General Public License for details. There is NO
WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#--
installed at: /tmp/RtmpjbTVDW/Rinstba44ac40d7d/irace
called with: --help
-l,--log-file Path to the (.Rdata) file created by irace from which

the "iraceResults" object will be loaded.
-S,--src Source configuration ID. Default: 1.
-T,--target Target configuration ID. By default the best

configuration found by irace.
-P,--params Specific parameter names to be used for the ablation

(separated with commas). By default use all
-t,--type Type of ablation to perform: "full" will execute each

configuration on all "--n-instances" to determine the
best-performing one; "racing" will apply racing to
find the best configurations. Default: full.

-n,--nrep Number of replications per instance used in "full"

48

ablation. Default: 1.
--seed Integer value to use as seed for the random number

generation. Default: 1234567.
-o,--output-file Log file to save the ablation log. If "", the results

are not saved to a file. Default: log-ablation.Rdata.
--instances-file Instances file used for ablation: "train", "test" or a

filename containing the list of instances. Default:
train.

-p,--plot Output filename (.pdf) for the plot. If not given, no
plot is created.

-O,--plot-type Type of plot. Supported values are "mean", "boxplot",
"rank" or "rank,boxplot". Default: mean.

--old-path Old path found in the log-file (.Rdata) given as input
to be replaced by --new-path.

--new-path New path to replace the path found in the log-file
(.Rdata) given as input.

-e,--exec-dir Directory where the target runner will be run.
-s,--scenario Scenario file to override the scenario given in the

log-file (.Rdata)
--parallel Number of calls to targetRunner to execute in

parallel. Values 0 or 1 mean no parallelization.

10.10 Postselection race
After the configuration process is finished it is possible perform a postselection race by specifying
the irace option postselection with value larger than 0. This option will perform a post-selection
race of the set of best configurations of each iteration. The budget assigned for this race is
obtained using the postselection option which defines a percentage of the irace configuration
budget. This budget is not considered in the total configuration budget that is, these evaluations
are extra computation.

The execution of the postselection race add an element (psrace.log) to the iraceResults
list saved in the irace log file. The postselection log consists of a list with the following elements:

configurations: Configurations used in the postselection race.

instances: Instances used in the in the postselection race.

maxExperiments: Configuration budget assigned for the postselection race.

experiments: Matrix of experiments in the same format as the iraceResults$experiments
matrix. The column names indicate the candidate configuration identifier and the row
names contain the name of the instances.

elites: Elite configurations obtained in the postselection race.

Optionally, it is possible to perform a postselection race with all elite configurations of the
iterations or selecting a set of configurations from iraceResults$allConfigurations.

49

Execute all elite configurations in the iterations
psRace("irace.Rdata", max_experiments = 0.5, elites=TRUE)
Execute a set of configurations IDs providing budget
psRace("irace.Rdata", conf_ids = c(34, 87, 102, 172, 293), max_experiments = 500)

10.11 Parameter importance analysis using PyImp
The PyImp5 tool developed by the AutoML group6 supports various parameter importance
analysis methods using surrogate models. Given a performance dataset of an algorithm configura-
tion scenario, a Random Forest is built to predict performance of all algorithm configurations.
Parameter importance analyses are then applied on the prediction model. The model serves
as a surrogate for the original target algorithm, so that the algorithm does not need to be
executed during the analyses. Three analysis methods are supported, namely fANOVA [10]
(functional analysis of variance), forward selection [9], and ablation analysis with surrogates [1].
Note that the irace package directly supports ablation (without surrogate models) analysis with
and without racing (Section 10.9). Although ablation analysis without surrogates may be more
time-consuming, results of the surrogate version may be less accurate than the non-surrogate one.

The .Rdata dataset generated by irace can be used as input for PyImp. The package
irace2pyimp7 is able to convert an irace.Rdata file into the input format required by Py-
Imp. The conversion can be accessed either through the R console (function irace2pyimp),
or via command line executable irace2pyimp (or irace2pyimp.exe in Windows) provided by
the package. You can find the location of the executable by running this command in R:
system.file(file.path("bin", "irace2pyimp"), package="irace2pyimp", mustWork=TRUE) or
system.file(file.path("bin", "irace2pyimp.exe"), package="irace2pyimp", mustWork=TRUE) in
Windows.

To see the usage of the executable, please run: irace2pyimp --help. For more information
on the R function irace2pyimp, type in the R console: ?irace2pyimp.

Given as input an irace.Rdata file, the script will generate the following output files:

• params.pcs: a text file containing the parameter space definition.

• runhistory.json: a JSON file containing the list of algorithm configurations evaluated during
the tuning and the performance data obtained.

• traj_aclib2.json: a JSON file containing the best configurations after each iteration of
irace. The last configuration will be used as the target configuration in ablation analysis.

• scenario.txt: a text file containing the definition of the tuning scenario.

• instances.txt: a text file containing the list of instances.

• features.csv: a .csv file containing instance features. If no instance features are provided,
the index of each instance will be used as a feature.

PyImp can then be called using the files listed above as input. Several examples on how to use
the script and call PyImp can be found at system.file("/examples/",package="irace2pyimp").

5https://github.com/automl/ParameterImportance
6https://www.automl.org/
7https://github.com/ndangtt/irace2pyimp

50

https://github.com/automl/ParameterImportance
https://www.automl.org/
https://github.com/ndangtt/irace2pyimp

11 List of command-line and scenario options
Most irace options can be specified in the command line using a flag or in the irace scenario
file using the option name (or setting their value in the scenario list passed to the various R
functions exported by the package). This section describes the various irace options that can be
specified by the user in this way.

Relative filesystem paths (e.g., ../scenario/) given in the command-line are relative to the
current working directory (the directory at which irace is invoked). However, paths given in the
scenario file are relative to the directory containing the scenario file. See also Table 1.

11.1 General options
--help flag: -h or --help default:

Show the list of command-line options of irace.

--version flag: -v or --version default:
Show the version of irace.

--check flag: -c or --check default:
Check that the scenario and parameter definitions are correct and test the execution of the
target algorithm. See Section 4.

--init flag: -i or --init default:
Initialize the working directory with the template config files. This copies the files in
$IRACE_HOME/templates to the working directory without overwriting the files with the
same names as those of the template files.

scenarioFile flag: -s or --scenario default: ./scenario.txt
File that contains the scenario setup and other irace options. All options listed in this
section can be included in this file. See $IRACE_HOME/templates/ for an example. Relative
file-system paths specified in the scenario file are relative to the scenario file itself.

execDir flag: --exec-dir default: ./
Directory where the target runner will be run. The default execution directory is the current
directory.

The execution directory must exist before executing irace, it will not be created
automatically.

logFile flag: -l or --log-file default: ./irace.Rdata
File to save tuning results as an R dataset. The provided path must be either an absolute
path or relative to execDir. See Section 9.2 for details on the format of the R dataset.

debugLevel flag: --debug-level default: 0
Level of information to display in the text output of irace. A value of 0 silences all debug
messages. Higher values provide more verbose debug messages. Details about the text
output of irace are given in Section 9.1.

seed flag: --seed default:
Seed to initiallize the random number generator. The seed must be a positive integer. If
the seed is "" or NULL, a random seed will be generated.

51

repairConfiguration default:
User-defined R function that takes a configuration generated by irace and repairs it. See
Section 5.6 for details.

postselection flag: --postselection default: 1
Perform a postselection race after the execution of irace to consume all remaining budget.
Value 0 disables the postselection race. See Section 10.10.

aclib flag: --aclib default: 0
Enable/disable AClib mode. This option enables compatibility with GenericWrapper4AC
(https://github.com/automl/GenericWrapper4AC/) as targetRunner script.

11.2 Elitist irace
elitist flag: -e or --elitist default: 1

Enable/disable elitist irace.
In the elitist version of irace [12], elite configurations are not discarded from the race until
non-elite configurations have been executed on the same instances as the elite configurations.
Each race begins by evaluating all configurations on a number of new instances. This
number is defined by the option elitistNewInstances. After the new instances have
been evaluated, configurations are evaluated on instances seen in the previous race. Elite
configurations already have results for most of these previous instances and, therefore, do
not need to be re-evaluated. Finally, after configurations have been evaluated on all these
instances, the race continues by evaluating additional new instances.
The statistical tests can be performed at any moment during the race according to the
setting of the options firstTest and eachTest. The elitist rule forbids discarding elite
configurations, even if the show poor performance, until the last of the previous instances is
seen in the race.
The non-elitist version of irace can discard elite configurations at any point of the race,
instances are not re-used from one race to the next, and new instances are sampled for each
race.

elitistNewInstances flag: --elitist-new-instances default: 1
Number of new instances added to each race before evaluating instances from previous races
(only for elitist irace).

If deterministic is TRUE then the number of elitistNewInstances will be reduced or set
to 0 once all instances have been evaluated.

elitistLimit flag: --elitist-limit default: 2
Maximum number of statistical tests performed without successful elimination after all
instances from the previous race have been evaluated. If the limit is reached, the current
race is stopped. Only valid for elitist irace. Use 0 to disable the limit.

11.3 Internal irace options
sampleInstances flag: --sample-instances default: 1

Enable/disable the sampling of the training instances. If the option sampleInstances is
disabled, the instances are used in the order provided in the trainInstancesFile or in

52

https://github.com/automl/GenericWrapper4AC/

the order they are read from the trainInstancesDir whentrainInstancesFile is not
provided. For more information about training instances see Section 5.4.

softRestart flag: --soft-restart default: 1
Enable/disable the soft-restart strategy that avoids premature convergence of the proba-
bilistic model. When a sampled configuration is similar to its parent configuration, the
probabilistic model of these configurations is soft restarted. The soft-restart mechanism
is explained in the irace paper [12]. The similarity of categorical and ordinal parameters
is given by the hamming distance, and the option softRestartThreshold defines the
similarity of numerical parameters.

softRestartThreshold flag: --soft-restart-threshold default: 1e-04
Soft restart threshold value for numerical parameters.

nbIterations flag: --iterations default: 0
Maximum number of iterations to be executed. Each iteration involves the generation
of new configurations and the use of racing to select the best configurations. By default
(with 0), irace calculates a minimum number of iterations as N iter = ⌊2 + log2 Nparam⌋,
where Nparam is the number of non-fixed parameters to be tuned. Setting this parameter
may make irace stop sooner than it should without using all the available budget. We
recommend to use the default value.

nbExperimentsPerIteration flag: --experiments-per-iteration default: 0
Number of runs of the target algorithm per iteration. By default (when equal to 0), this
value changes for each iteration and depends on the iteration index and the remaining
budget. Further details are provided in the irace paper [12]. We recommend to use the
default value.

minNbSurvival flag: --min-survival default: 0
Minimum number of configurations needed to continue the execution of each race (iteration).
If the number of configurations alive in the race is not larger than this value, the current
iteration will stop and a new iteration will start, even if there is budget left to continue
the current race. By default (when equal to 0), the value is calculated automatically as
⌊2 + log2 Nparam⌋, where Nparam is the number of non-fixed parameters to be tuned.

nbConfigurations flag: --num-configurations default: 0
The number of configurations that will be raced at each iteration. By default (when equal to
0), this value changes for each iteration and depends on nbExperimentsPerIteration, the
iteration index and mu. The precise details are given in the irace paper [12]. We recommend
to use the default value.

mu flag: --mu default: 5
Parameter used to define the number of configurations to be sampled and evaluated at each
iteration. The number of configurations will be calculated such that there is enough budget
in each race to evaluate all configurations on at least µ + min(5, j) training instances, where
j is the index of the current iteration. The value of µ will be adjusted to never be lower
than the value of firstTest. We recommend to use the default value and, if needed, adjust
firstTestand eachTest, instead.

11.4 Target algorithm parameters
parameterFile flag: -p or --parameter-file default: ./parameters.txt

File that contains the description of the parameters of the target algorithm. See Section 5.1.

53

11.5 Target algorithm execution
targetRunner flag: --target-runner default: ./target-runner

Executable or R function that evaluates a configuration of the target algorithm on a
particular instance. See Section 5.2 for details.

targetRunnerLauncher flag: --target-runner-launcher default:
Executable that will be used to launch the target runner, when targetRunner cannot be
executed directly (e.g., a Python script in Windows).

targetCmdline flag: --target-cmdline default: {configurationID} {instanceID} {seed}
{instance} {bound} {targetRunnerArgs}
Command-line arguments provided to targetRunner (or targetRunnerLauncher if de-
fined). The substrings {configurationID}, {instanceID}, {seed}, {instance}, and
{bound} will be replaced by their corresponding values. The substring {targetRunnerArgs}
will be replaced by the concatenation of the switch and value of all active parameters of
the particular configuration being evaluated. The substring {targetRunner}, if present,
will be replaced by the value of targetRunner (useful when using targetRunnerLauncher).
Example:

targetRunner="./real_target_runner.py"
targetRunnerLauncher="python"
targetCmdLine="-m {targetRunner} {configurationID} {instanceID}\
--seed {seed} -i {instance} --cutoff {bound} {targetRunnerArgs}"

targetRunnerRetries flag: --target-runner-retries default: 0
Number of times to retry a call to targetRunner if the call failed.

targetRunnerTimeout flag: --target-runner-timeout default: 0
Timeout in seconds of any targetRunner call (only applies to target-runner executables
not to R functions), ignored if 0.

targetRunnerData default:
Optional data passed to targetRunner. This is ignored by the default targetRunner
function, but it may be used by custom targetRunner functions to pass persistent data
around.

targetRunnerParallel default:
Optional R function to provide custom parallelization of targetRunner. See Section 6 for
more information.

targetEvaluator flag: --target-evaluator default:
Optional script or R function that returns a numerical value for an experiment after all
configurations have been executed on a given instance using targetRunner. See Section 5.3
for details.

deterministic flag: --deterministic default: 0
Enable/disable deterministic target algorithm mode. If the target algorithm is deterministic,
configurations will be evaluated only once per instance. See Section 5.4 for more information.

If the number of instances provided is less than the value specified for the option
firstTest, no statistical test will be performed.

54

parallel flag: --parallel default: 0
Number of calls of the targetRunner to execute in parallel. Values 0 or 1 mean no
parallelization. For more information on parallelization, see Section 6.

loadBalancing flag: --load-balancing default: 1
Enable/disable load-balancing when executing experiments in parallel. Load-balancing
makes better use of computing resources, but increases communication overhead. If this
overhead is large, disabling load-balancing may be faster. See Section 6.

mpi flag: --mpi default: 0
Enable/disable use of Rmpi to execute the targetRunner in parallel using MPI protocol.
When mpi is enabled, the option parallel is the number of slave nodes. See Section 6.

batchmode flag: --batchmode default: 0
Specify how irace waits for jobs to finish when targetRunner submits jobs to a batch
cluster: sge, pbs, torque, slurm or htcondor (targetRunner must submit jobs to the
cluster using. for example, qsub). See Section 6.

11.6 Initial configurations
configurationsFile flag: --configurations-file default:

File containing a table of initial configurations. If empty or NULL, irace will not use initial
configurations. See Section 5.5.

The provided configurations must not violate the constraints described in parameterFile
and forbiddenFile.

11.7 Training instances
trainInstancesDir flag: --train-instances-dir default:

Directory where training instances are located; either absolute path or relative to current
directory. See Section 5.4.

trainInstancesFile flag: --train-instances-file default:
File that contains a list of instances and optionally additional parameters for them. See
Section 5.4.

The list of instances in trainInstancesFile is interpreted as file-system paths relative to
trainInstancesDir. When using an absolute path or instances that are not files, set
trainInstancesDir="".

11.8 Tuning budget
maxExperiments flag: --max-experiments default: 0

The maximum number of runs (invocations of targetRunner) that will be performed. It
determines the maximum budget of experiments for the tuning. See Section 10.1.

minExperiments flag: --min-experiments default:
The minimum number of runs (invocations of targetRunner) that will be performed. If
this option is set, then maxExperiments is ignored and the actual budget will depend on
the number of parameters and minSurvival, but it will not be smaller than this value. See
Section 10.1.

55

maxTime flag: --max-time default: 0
The maximum total time for the runs of targetRunner that will be performed. The mean
execution time of each run is estimated in order to calculate the maximum number of ex-
periments (see option budgetEstimation). When maxTime is positive, then targetRunner
must return the execution time as its second output. This value and the one returned by
targetRunner must use the same units (seconds, minutes, iterations, evaluations, . . .). See
Section 10.1.

budgetEstimation flag: --budget-estimation default: 0.05
Fraction (smaller than 1) of the budget used to estimate the mean execution time of a
configuration. Only used when maxTime > 0. See Section 10.1.

minMeasurableTime flag: --min-measurable-time default: 0.01
Minimum time unit that is still (significantly) measureable.

11.9 Statistical test
testType flag: --test-type default:

Specifies the statistical test used for elimination:

F-test (Friedman test)
t-test (pairwise t-tests with no correction)
t-test-bonferroni (t-test with Bonferroni’s correction for multiple comparisons)
t-test-holm (t-test with Holm’s correction for multiple comparisons).

We recommend to not use corrections for multiple comparisons because the test typically
becomes too strict and the search stagnates. See Section 10.6 for details about choosing the
statistical test most appropriate for your scenario.

The default setting of testType is F-test unless the capping option is enabled in which
case, the default setting is t-test.

firstTest flag: --first-test default: 5
Specifies how many instances are evaluated before the first elimination test.

The value of firstTest must be a multiple of eachTest.

eachTest flag: --each-test default: 1
Specifies how many instances are evaluated between elimination tests.

confidence flag: --confidence default: 0.95
Confidence level for the elimination test.

11.10 Adaptive capping
capping flag: --capping default:

Enable the use of adaptive capping. Capping is enabled by default if elitist is active,
maxTime > 0 and boundMax > 0. When using this option, irace provides an execution
bound to each target algorithm execution (See Section 5.2). For more details about this
option See Section 10.3.

56

cappingType flag: --capping-type default: median
Specifies the measure used to define the execution bound:

median (the median of the performance of the elite configurations)
mean (the mean of the performance of the elite configurations)
best (the best performance of the elite configurations)
worst (the worst performance of the elite configurations).

boundType flag: --bound-type default: candidate
Specifies how to calculate the performance of elite configurations for the execution bound:

candidate (performance of candidates is aggregated across the instances already exe-
cuted)
instance (performance of candidates on each instance).

boundMax flag: --bound-max default: 0
Maximum execution bound for targetRunner. It must be specified when capping is enabled.

boundDigits flag: --bound-digits default: 0
Precision used for calculating the execution time. It must be specified when capping is
enabled.

boundPar flag: --bound-par default: 1
Penalty used for PARX. This value is used to penalize timed out executions, see Section 10.3.

boundAsTimeout flag: --bound-as-timeout default: 1
Replace the configuration cost of bounded executions with boundMax. See Section 10.3.

11.11 Recovery
recoveryFile flag: --recovery-file default:

Previously saved irace log file that should be used to recover the execution of irace; either
absolute path or relative to the current directory. If empty or NULL, recovery is not performed.
For more details about recovery, see Section 8.

11.12 Testing
--only-test flag: --only-test default:

Run the configurations contained in the file provided as argument on the test instances.
See Section 7.

testInstancesDir flag: --test-instances-dir default:
Directory where testing instances are located, either absolute or relative to the current
directory.

testInstancesFile flag: --test-instances-file default:
File containing a list of test instances and, optionally, additional parameters for them.

testNbElites flag: --test-num-elites default: 1
Number of elite configurations returned by irace that will be tested if test instances are
provided. For more information about the testing, see Section 7.

testIterationElites flag: --test-iteration-elites default: 0
Enable/disable testing the elite configurations found at each iteration.

57

12 FAQ (Frequently Asked Questions)
12.1 Is irace minimizing or maximizing the output of my algorithm?
By default, irace considers that the value returned by targetRunner (or by targetEvaluator,
if used) should be minimized. In case of a maximization problem, one can simply multiply
the value by -1 before returning it to irace. This is done, for example, when maximizing the
hypervolume (see the last lines in $IRACE_HOME/examples/hypervolume/target-evaluator).

12.2 Are experiments with irace reproducible?
Short answer: Yes, under some conditions.
Long answer: According to the terminology described by López-Ibáñez et al. [13], we define
repeatability as “exactly repeating the original experiment, generating precisely the same results”.
Following this definition, a run of irace is repeatable under the following conditions:

• Same version of irace.

• Same version of R (different versions of R may change the behavior of functions used by irace).

• The behavior of targetRunner is deterministic or exactly reproducible for the same instance,
parameter configuration and random seed. Make sure that targetRunner uses the seed
provided by irace to initialize all random number generators used. If the result of targetRunner
depends on CPU-time, wall-clock time or system load in any way, then targetRunner is not
reproducible and neither will be irace.

• Same random seed (seed) given to irace.

• Same scenario options (Section 11). Although some options should not affect reproducibility
(e.g., debugLevel), maintaining a list of such options will be a huge effort, thus the safest
assumption is that any change may break reproducibility.

• Same parameter space (Section 5.1), including types, domains, conditions and forbidden
configurations. The order of the parameters may also affect reproducibility (the name of the
parameters should not) because it affects the order in which random numbers are used.

• Same training instances provided and in the same order (Section 5.4). Even if the instances
are sampled randomly (sampleInstances), a different initial order will produce a different
sample even with the same random seed.

• Same initial configurations (Section 5.5), if any.

12.3 Is it possible to configure a MATLAB algorithm with irace?
Definitely. There are three main ways to achieve this:

1. Edit the targetRunner script to call MATLAB in a non-interactive way. See the MATLAB
documentation, or the following links.89 You would need to pass the parameter received

8http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab
9http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-

stdout-before-exiting

58

http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting

by targetRunner to your MATLAB script.1011 There is a minimal example in $IRACE_
HOME/examples/matlab/.

2. Call MATLAB code directly from R using the matlabr package (https://cran.r-project.
org/package=matlabr). This is a better option if you are experienced in R. Define targetRunner
as an R function instead of a path to a script. The function should call your MATLAB code
with appropriate parameters.

3. Another possibility is calling MATLAB directly from a different programming language and
write targetRunner in that programming language, for example, in Python (see examples in
$IRACE_HOME/examples/target-runner-python/).12

12.4 My program works perfectly on its own, but not when running
under irace. Is irace broken?

Every time this was reported, it was a difficult-to-reproduce bug, i.e., a Heisenbug, in the program
(target algorithm), not in irace. To detect such bugs, we recommend that you use, within
targetRunner, a memory debugger (e.g., valgrind) to run your program. For example, if your
program is executed by targetRunner as:

${EXE} ${FIXED_PARAMS} -i ${INSTANCE} ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

then replace that line with:

valgrind --error-exitcode=1 ${EXE} ${FIXED_PARAMS} -i ${INSTANCE} \
${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

If there are bugs in your program, they will appear in $STDERR, thus do not delete those files.
Memory debuggers will significantly slowdown your code, so use them only as a means to find
what is wrong with your target algorithm. Once you have fixed the bugs, you should remove the
use of valgrind.

12.5 irace seems to run forever without any progress, is this a bug?
Every time this problem was reported, the issue was in the target algorithm and not in irace.
Some ideas for debugging this problem:

• Check that the target algorithm is really not running nor paused nor sleeping nor waiting for
input-output.

• Use debugLevel=3 to see how irace calls target-runner, run the same command outside
irace and verify that it terminates.

• Add some output to your algorithm that reports at the very end the runtime and exit code.
Verify that this output is printed when irace calls your algorithm.

10https://www.mathworks.com/matlabcentral/answers/97204-how-can-i-pass-input-parameters-when-
running-matlab-in-batch-mode-in-windows

11https://stackoverflow.com/questions/3335505/how-can-i-pass-command-line-arguments-to-a-
standalone-matlab-executable-running

12https://www.mathworks.com/help/matlab/matlab_external/call-matlab-functions-from-python.html
https://www.mathworks.com/help/matlab/matlab_external/call-user-script-and-function-from-
python.html

59

https://cran.r-project.org/package=matlabr
https://cran.r-project.org/package=matlabr
https://en.wikipedia.org/wiki/Heisenbug
http://valgrind.org/
https://www.mathworks.com/matlabcentral/answers/97204-how-can-i-pass-input-parameters-when-running-matlab-in-batch-mode-in-windows
https://www.mathworks.com/matlabcentral/answers/97204-how-can-i-pass-input-parameters-when-running-matlab-in-batch-mode-in-windows
https://stackoverflow.com/questions/3335505/how-can-i-pass-command-line-arguments-to-a-standalone-matlab-executable-running
https://stackoverflow.com/questions/3335505/how-can-i-pass-command-line-arguments-to-a-standalone-matlab-executable-running
https://www.mathworks.com/help/matlab/matlab_external/call-matlab-functions-from-python.html
https://www.mathworks.com/help/matlab/matlab_external/call-user-script-and-function-from-python.html
https://www.mathworks.com/help/matlab/matlab_external/call-user-script-and-function-from-python.html

• In target-runner, print something to a log file after calling your target algorithm. Verify
that this output appears in the log file when irace is running.

• Set a maximum timeout when calling your target algorithm from target-runner (see
FAQ 12.6).

12.6 My program may be buggy and run into an infinite loop. Is it
possible to set a maximum timeout?

We are not aware of any way to achieve this using R. However, in GNU/Linux, it is easy to
implement by using the timeout command13 in targetRunner when invoking your program.

12.7 When using the mpi option, irace is aborted with an error message
indicating that a function is not defined. How to fix this?

Rmpi does not work the same way when called from within a package and when called from a
script or interactively. When irace creates the slave nodes, the slaves will load a copy of irace
automatically. If the slave nodes are on different machines, they must have irace installed. If
irace is not installed system-wide, R needs to be able to find irace on the slave nodes. This is
usually done by setting R_LIBS, .libPaths() or by loading irace using library() or require()
with the argument “lib.loc”. The settings on the master are not applied to the slave nodes
automatically, thus the slave nodes may need their own settings. After spawning the slaves, it is
too late to modify those settings, thus modifying the shell variable R_LIBS seems the only valid
way to tell the slaves where to find irace.

If the path is set correctly and the problem persists, please check these instructions:

1. Test that irace and Rmpi work. Run irace on a single machine (submit node), without calling
qsub, mpirun or a similar wrapper around irace or R.

2. Test loading irace on the slave nodes. However, jobs submitted by qsub/mpirun may load R
packages using a different mechanism from the way it happens if you log directly into the node
(e.g., with ssh). Thus, you need to write a little R program such as:

library(Rmpi)
mpi.spawn.Rslaves(nslaves = 10)
paths <- mpi.applyLB(1:10, function(x) {

library(irace); return(path.package("irace")) })
print(paths)

Submit this program to the cluster like you would submit irace (using qsub, mpirun or whatever
program is used to submit jobs to the cluster).

3. In the script bin/parallel-irace-mpi, the function irace_main() creates an MPI job for
our cluster. You may need to speak with the admin of your cluster and ask them how to best
submit a job for MPI. There may be some particular settings that you need. Rmpi normally
creates log files; but irace suppresses those files unless debugLevel > 0.

Please contact us (Section 13) if you have further problems.
13http://man7.org/linux/man-pages/man1/timeout.1.html

60

http://man7.org/linux/man-pages/man1/timeout.1.html

12.8 Error: 4 arguments passed to .Internal(nchar) which requires 3
This is a bug in R 3.2.0 on Windows. The solution is to update your version of R.

12.9 Warning: In read.table(filename, header = TRUE, colClasses =
"character", : incomplete final line found by . . .

This is a warning given by R when the last line of an input file does not finish with the newline
character. The warning is harmless and can be ignored. If you want to suppress it, just open
the file and press the ENTER key at the end of the last line of the file to end the final line with a
newline.

12.10 How are relative filesystem paths interpreted by irace?
The answer depends on where the path appears. Relative paths may appear as the argument of
command-line options, as the value of options given in the scenario file, or within various scripts,
functions or instance files. Table 1 summarizes how paths are translated from relative to absolute.

Table 1: Translation of relative to absolute filesystem paths.
Relative path appears as is relative to . . .

a string within trainInstancesFile trainInstancesDir
a string within testInstancesFile testInstancesDir

code within targetRunner or targetEvaluator execDir
the value of logFile or --log-file execDir

the value of other options in the scenario file the directory containing the scenario file
the value of other command-line options invocation (working) directory of irace

12.11 My parameter space is small enough that irace could generate
all possible configurations; however, irace generates repeated
configurations and/or does not generate some of them. Is this a
bug?

Typically, irace is applied to parameter spaces that are much larger than what can be explored
within the budget given. Thus, irace does not try to detect whether all possible configurations
can be evaluated for the given budget and it does not waste computation time to check for
repeated configurations. Thus, if the parameter space is actually very small, the initial ran-
dom sampling performed by irace may generate repeated configurations and/or never generate
some configurations, which is not ideal. If you still want to use (non-iterated) racing, the
recommended approach is to provide all configurations explicitly to irace (Section 5.5) and
execute a single race (nbIterations=1) with exactly the number of configurations provided
(e.g., nbConfigurations=240). A future version of irace may automatically detect this case and
switch to non-iterated racing without having to set additional options. Future versions may also
implement computationally cheap checks for repeated configurations.14

14If you are interested in implementing this, please contact us!

61

12.12 On Windows and using target-runner.py (a Python file), I get
the error “target-runner.py is not executable”

The issue is that .py files are not executable on their own and you need python.exe to read the .py
file and execute it. Linux knows how to do this if the first line of the file is “#!/usr/bin/python”,
however, Windows doesn’t know how to do it. In Windows you have 2 options:

• Create a target-runner.bat file that contains a line similar to (see templates/windows/
target-runner.bat):

C:\path\to\python.exe C:\path\to\target-runner.py %instance% %seed% \
%candidate_parameters% 1>%stdout% 2>%stderr%

• Or convert target-runner.py into an .exe file, for example, using auto-py-to-exe15, so
that you do not need a .bat file.

12.13 Error in socketConnection("localhost", port = port, server = TRUE,
lock = TRUE, : can not open the connection

This error may arise if you activate the parallel option of irace and your targetRunner or
targetEvaluator tries to setup a parallel cluster or execute code in parallel in a way that interacts
badly with the parallel mechanism in R. In this case, you need to either investigate yourself
if there is a way for the two parallel mechanisms to co-exist or, if that is not possible, disable
parallelism in irace or in your code. Note that packages or software used by your targetRunner
may have a parallel mechanism enabled by default and unknown to you. This is definitely NOT
a bug in irace.

13 Resources and contact information
More information about the package can be found on the irace webpage:

https://iridia.ulb.ac.be/supp/IridiaSupp2016-003/index.html

For questions and suggestions please contact the development team through the irace package
Google group:

https://groups.google.com/d/forum/irace-package

or by sending an email to:

irace-package@googlegroups.com

14 Acknowledgements
We would like to thank all the people that directly or indirectly have collaborated in the
development and improvement of irace: Prasanna Balaprakash, Zhi (Eric) Yuan, Franco Mascia,
Alberto Franzin, Anthony Antoun, Esteban Diaz Leiva, Federico Caselli, Pablo Valledor Pellicer,
André de Souza Andrade, and Nguyen Dang (nttd@st-andrews.ac.uk).

15https://pypi.org/project/auto-py-to-exe/

62

https://iridia.ulb.ac.be/supp/IridiaSupp2016-003/index.html
https://groups.google.com/d/forum/irace-package
mailto:irace-package@googlegroups.com
https://pypi.org/project/auto-py-to-exe/

Bibliography
[1] A. Biedenkapp, M. T. Lindauer, K. Eggensperger, F. Hutter, C. Fawcett, and H. H. Hoos.

Efficient parameter importance analysis via ablation with surrogates. In S. P. Singh and
S. Markovitch, editors, Proceedings of the AAAI Conference on Artificial Intelligence. AAAI
Press, Feb. 2017. doi: 10.1609/aaai.v31i1.10657.

[2] M. Birattari. On the estimation of the expected performance of a metaheuristic on a class of
instances. how many instances, how many runs? Technical Report TR/IRIDIA/2004-001,
IRIDIA, Université Libre de Bruxelles, Belgium, 2004.

[3] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated F-race: An
overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors,
Experimental Methods for the Analysis of Optimization Algorithms, pages 311–336. Springer,
Berlin, Germany, 2010. doi: 10.1007/978-3-642-02538-9_13.

[4] M. De Souza, M. Ritt, M. López-Ibáñez, and L. Pérez Cáceres. ACVIZ: A tool for the visual
analysis of the configuration of algorithms with irace. Operations Research Perspectives, 8:
100186, 2021. doi: 10.1016/j.orp.2021.100186.

[5] M. De Souza, M. Ritt, and M. López-Ibáñez. Capping methods for the automatic configuration
of optimization algorithms. Computers & Operations Research, 139:105615, 2022. doi:
10.1016/j.cor.2021.105615.

[6] C. Fawcett and H. H. Hoos. Analysing differences between algorithm configurations through
ablation. Journal of Heuristics, 22(4):431–458, 2016.

[7] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An improved dimension-sweep algorithm for
the hypervolume indicator. In Proceedings of the 2006 Congress on Evolutionary Computation
(CEC 2006), pages 1157–1163. IEEE Press, Piscataway, NJ, July 2006. doi: 10.1109/CEC.
2006.1688440.

[8] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, Oct. 2009.
doi: 10.1613/jair.2861.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Identifying key algorithm parameters and
instance features using forward selection. In P. M. Pardalos and G. Nicosia, editors, Learning
and Intelligent Optimization, 7th International Conference, LION 7, volume 7997 of Lecture
Notes in Computer Science, pages 364–381. Springer, Heidelberg, 2013. doi: 10.1007/978-3-
642-44973-4_40.

[10] F. Hutter, H. H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hy-
perparameter importance. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning, ICML 2014, volume 32, pages 754–762, 2014.
URL https://proceedings.mlr.press/v32/hutter14.html.

[11] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package,
iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011. URL http://iridia.ulb.
ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf. Published in Operations Research
Perspectives [12].

63

https://doi.org/10.1609/aaai.v31i1.10657
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1016/j.orp.2021.100186
https://doi.org/10.1016/j.cor.2021.105615
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/978-3-642-44973-4_40
https://doi.org/10.1007/978-3-642-44973-4_40
https://proceedings.mlr.press/v32/hutter14.html
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2011-004.pdf

[12] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari. The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002.

[13] M. López-Ibáñez, J. Branke, and L. Paquete. Reproducibility in evolutionary computation.
ACM Transactions on Evolutionary Learning and Optimization, 1(4):1–21, 2021. doi:
10.1145/3466624.

[14] C. C. McGeoch. Analyzing algorithms by simulation: Variance reduction techniques and
simulation speedups. ACM Computing Surveys, 24(2):195–212, 1992. doi: 10.1145/130844.
130853.

[15] L. Pérez Cáceres, M. López-Ibáñez, H. H. Hoos, and T. Stützle. An experimental study of
adaptive capping in irace. In R. Battiti, D. E. Kvasov, and Y. D. Sergeyev, editors, Learning
and Intelligent Optimization, 11th International Conference, LION 11, volume 10556 of
Lecture Notes in Computer Science, pages 235–250. Springer, Cham, Switzerland, 2017. doi:
10.1007/978-3-319-69404-7_17.

[16] M. Schneider and H. H. Hoos. Quantifying homogeneity of instance sets for algorithm con-
figuration. In Y. Hamadi and M. Schoenauer, editors, Learning and Intelligent Optimization,
6th International Conference, LION 6, volume 7219 of Lecture Notes in Computer Science,
pages 190–204. Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-34413-8_14.

64

https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1145/3466624
https://doi.org/10.1145/130844.130853
https://doi.org/10.1145/130844.130853
https://doi.org/10.1007/978-3-319-69404-7_17
https://doi.org/10.1007/978-3-642-34413-8_14

Appendix A Installing R
This section gives a quick R installation guide that will work in most cases. The official instructions
are available at https://cran.r-project.org/doc/manuals/r-release/R-admin.html

A.1 GNU/Linux
You should install R from your package manager. On a Debian/Ubuntu system it will be something
like:

sudo apt-get install r-base

Once R is installed, you can launch R from the Terminal and from the R prompt install the
irace package (see Section 3.2).

A.2 OS X
You can install R directly from a CRAN mirror.16 Alternatively, if you use homebrew, you can
just brew the R formula from the science tap (unfortunately it does not come already bottled so
you need to have Xcode17 installed to compile it):

brew tap homebrew/science
brew install r

Once R is installed, you can launch R from the Terminal (or from your Applications), and
from the R prompt install the irace package (see Section 3.2).

A.3 Windows
You can install R from a CRAN mirror.18 We recommend that you install R on a filesystem
path without spaces, special characters or long names, such as C:\R. Once R is installed, you can
launch the R console and install the irace package from it (see Section 3.2).

Appendix B targetRunner troubleshooting checklist
If the targetRunner script fails to return the output expected by irace, it can be sometimes
difficult to diagnose where the problem lies. The more descriptive errors provided by your script,
the easier it will be to debug it. If targetRunner enters an infinite loop, irace will wait indefinitely
(see FAQ in Section 12.6). If you are using temporary files to redirect the output of your algorithm,
check that these files are properly created. We recommend to follow the structure of the example
file (target-runner) provided in $IRACE_HOME/templates. The following error examples are
based on that example file.

In case of failure of targetRunner, irace will print an error on its output describing which
execution of targetRunner failed. Follow this checklist to detect where the problem is:

1. Make sure that your targetRunner script or program is at the specified location. If you see
this error:

16https://cran.r-project.org/bin/macosx/
17Xcode download webpage: https://developer.apple.com/xcode/download/
18https://cran.r-project.org/bin/windows/

65

https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/bin/macosx/
https://developer.apple.com/xcode/download/
https://cran.r-project.org/bin/windows/

Error: == irace == target runner './tuning/target-runner' does not exist

it means that irace cannot find the target-runner file. Check that the file is at the path
specified by the error.

2. Make sure that your targetRunner script is an executable file and the user running irace has
permission to execute it. The following errors:

Error: == irace == target runner './tuning/target-runner' is a directory,
not a file

or

Error: == irace == target runner './tuning/target-runner' is not executable

mean that your targetRunner is not an executable file. In the first case, the script is a folder
and therefore there must be a problem with the name of the script. In the second case, you
must make the file executable, which in GNU/Linux can be done by:

chmod +x ./tuning/target-runner

3. If your targetRunner script calls another program, make sure it is at the location described in
the script (variable EXE in the examples and templates). A typical output for such an error is:

Error: == irace == running command ''./tuning/target-runner' 1 8 676651103
./tuning/Instances/1000-16.tsp --ras --localsearch 2 --alpha 4.03 --beta 1.89
--rho 0.02 --ants 37 --nnls 48 --dlb 0 --rasranks 15 2>\&1' had status 1
== irace == The call to target_runner_default was:
./tuning/target-runner 1 8 676651103 ./tuning/Instances/1000-16.tsp --ras
--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48
--dlb 0 --rasranks 15
== irace == The output was:
Tue May 3 19:00:37 UTC 2016: error: ./bin/acotsp: not found or not executable
(pwd: ./tuning/acotsp-arena)

You may test your script by copying the command line shown in the error and executing
target-runner directly on the execution directory (execDir). In this case, the command line
is:

./tuning/target-runner 1 8 676651103 ./tuning/Instances/1000-16.tsp --ras \
--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48 \
--dlb 0 --rasranks 15

This executes the targetRunner script as irace does. The output of this script must be only
one number.

4. If your targetRunner file is an executable script in Python, R, Perl, Bash or some other
interpreted programming language, make sure that the interpreter specified in the first line of
the file exists at the correct location. For example, if the first line of target-runner.py is:

#|/usr/bin/python

Then make sure that /usr/bin/python exists and it is executable. Otherwise, you will get an
error such as:

66

Error: == irace == error in running command

5. Check that your targetRunner script is actually returning one number as output. For example:

Error: == irace == The output of './tuning/target-runner 1 25 365157769
./tuning/Instances/1000-31.tsp --ras --localsearch 1 --alpha 0.26 --beta
6.95 --rho 0.69 --ants 56 --nnls 10 --dlb 0 --rasranks 7' is not numeric!

== irace == The output was:
Solution: 24479793

In the example above, the output of target-runner is “Solution: 24479793”, which is not
a number. If target-runner is parsing the output of the target algorithm, you need to verify
that the code only parses the solution cost value.

6. Check that your targetRunner script is creating the output files for your algorithm. If you
see an error as:

== irace == The output was: Tue May 3 19:41:40 UTC 2016:
error: c1-9.stdout: No such file or directory

The output file of the execution of your algorithm has not been created (check permissions) or
has been deleted before the result can be read.

7. Other errors can produce the following output:

== irace == The output was: Tue May 3 19:49:06 UTC 2016:
error: c1-23.stdout: Output is not a number

This might be because your targetRunner script is not executing your algorithm correctly.
To further investigate this issue, comment out the line that eliminates the temporary files that
saves the output of your algorithm. Similar to this one

rm -f "${STDOUT}" "${STDERR}"

Execute directly the targetRunner command-line that is provided in the error message, look
in your execution directory for the files that are created. Check the .stderr file for errors
and the .stdout file to see the output that your algorithm produces.

8. Some command within targetRunner may not be working correctly. In that case, you must
debug the commands individually exactly as irace executes them. In order to find where the
problem is, print the commands to a log file before executing them. For example:

echo "$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS}" >> ${STDERR}.log
$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

then look at the $STDERR.log file corresponding to the targetRunner call that failed and
execute/debug the last command there.

9. If the language of your operating system, the target-runner or the target algorithm is not
English, irace may not be able to recognize the numbers generated by target-runner. We
recommend that you run irace, the target-runner and the target algorithm under an English
locale (or make sure that their languages and number format are compatible).

67

10. It is possible that transient bugs in the target algorithm are only visible when running within
irace, and all commands within targetRunner appear to work fine when executed directly in
the command-line outside irace. See FAQ in Section 12.4) for suggestions on how to detect
such bugs.

11. If your targetRunner script works when running irace with parallel=0 but it fails when
using higher number of cores, this may be due to any number of reasons:

• If you submit jobs through a queuing system, the running environment when using the
queuing system may not be the same as when you launch irace yourself. The queuing
system may also send the job to different machines depending on the number of CPUs
requested. One way to test this is to submit the failing execution of targetRunner to the
queuing system, and specifically to any problematic machine.

• When using MPI, some calls to targetRunner may run on different computers than the
one running the master irace process. See FAQ in Section 12.7.

• Does targetRunner read or create intermediate files? These files may cause a race condition
when two calls to targetRunner happen at the same time. You have to make sure that
parallel runs of targetRunner do not interfere with each other’s files.

• Maybe these files consume too much memory or fill the filesystem when there are simulta-
neous targetRunner calls? Moreover, queuing systems have stricter limits for computing
nodes than for the submit/host node.

• Does the machine or the queuing system impose any limits on number of processes or
CPU/memory/filesystem usage per job? Such limits may only trigger when more than one
process is executed in parallel, killing the targetRunner process before it has a chance
to print anything useful. In that case, irace may not detect the the program finished
unexpectedly, only that the expected output was not printed.

Appendix C targetEvaluator troubleshooting checklist
Even if targetRunner appears to work, the use of targetEvaluator may lead to other problems.
The same checklist of targetRunner can be followed here. In addition, we list here other potential
problems unique to targetEvaluator:

1. If targetEvaluator fails only in the second or later iteration, this may because output
files or data generated by a previous call to targetRunner are missing. Elite configurations
are never re-executed on the same instance and seed pair, that is, irace will call only once
targetRunner for each pair of configuration ID and instance ID. However, targetEvaluator
is always re-executed, which takes into account any updated information (normalization
bounds, reference sets/points, best-known values, etc.). Thus, any files or data generated by
targetRunner for a given configuration must remain available to targetEvaluator as long
as that configuration is alive. The list of alive configurations is passed to targetEvaluator,
which may decide then which data to keep or remove.

Appendix D Glossary
Parameter tuning: Process of searching good settings for the parameters of an algorithm under

a particular tuning scenario (instances, execution time, etc.).

68

https://en.wikipedia.org/wiki/Heisenbug

Scenario: Settings that define an instance of the tuning problem. These settings include the
algorithm to be tuned (target), budget for the execution of the target algorithm (execution
time, evaluations, iterations, etc.), set of problem instances and all the information that is
required to perform the tuning.

Target algorithm: Algorithm whose parameters will be tuned.

Target parameter: Parameter of the target algorithm that will be tuned.

irace option: Configurable option of irace.

Elite configurations: Best configurations found so far by irace. New configurations for the
next iteration of irace are sampled from the probabilistic models associated to the elite
configurations. All elite configurations are also included in the next iteration.

$IRACE_HOME: The filesystem path where irace is installed. You can find this information by
opening an R console and executing:

system.file(package = "irace")

Appendix E NEWS
NEWS

If you are viewing this file on CRAN, please check [latest news on GitHub](https://github.com/MLopez-Ibanez/irace/blob/master/NEWS.md) where the formatting is also better.

irace 3.9.0.9000

Major breaking changes

* Requires R version >= 4.0

* Logfiles `*.Rdata` use format version 3, which can only be read by R version >= 3.5.

* The scenario options `forbiddenFile` and `forbiddenExps` have been removed
and will give an error if present. Forbidden configurations are now
specified in the parameter space description. See the example in
`readParameters()`.

* The scenario option `digits` has been removed and will give an error if
present. The number of `digits` for real-valued parameters is now specified
in the parameter space description. See the example in `readParameters()`.

* The default value of the scenario option `trainInstancesDir` is now `""`.
The previous default value of `"./Instances"` often caused confusion to
users not using files as training instances.

* The `scenario` object now includes the `parameters` object. Thus
functions such as `irace()`, which previously took as arguments both
`scenario` and `parameters`, now only take `scenario`. This also means that
the log file `irace.Rdata` does not contain a separate `parameters` element
since this element can now be found within `scenario`.

* The default value of the scenario option `softRestartThreshold` is now
0.0001 and does not depend on `digits`.

* The command-line executables `irace` and `ablation` (`irace.exe` and

69

`ablation.exe` in Windows) will load the version of the `irace` package that
is found in the same path where the executables are. In earlier versions,
the executables will always load the version found via `base::.libPaths()`.
This change allows installing multiple versions of the irace package in
different locations and each executable will use its corresponding version.
The correct location can be verified by looking at the line `"installed at:"`
printed in the output.

* Adaptive capping is now enabled by default if `maxTime > 0` and `maxBound > 0`.
It can be disabled with `--capping 0` in the command-line options or `capping=0` in the scenario options. See [Pérez-Cáceres et al. (2017)](https://iridia-ulb.github.io/references/#PerLopHooStu2017:lion) for details.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The scenario option `targetRunnerLauncherArgs`, introduced in version 3.5,
was removed and replaced by `targetCmdline`, which is more flexible (fixes #38).
Please see the user-guide for details.

* Command-line options in joined form, given as `"--log-file= --check"`, without
any argument after the `'='` will be interpreted as an empty argument,
equivalent to using `logFile=""` in `scenario.txt`.

* irace will now give an error if you try to recover from a file generated by
a different version of irace, since such attempts typically end up in errors
that are difficult to understand.

* irace warns about using `'&&'` and `'||'` instead of `'&'` and `'|'` in
parameter conditions and forbidden expressions. A future version of irace
will reject those uses as errors.

* The internal function `irace.reload.debug()` has been removed.
Use `devtools::reload()` instead.

* The column `"instance"` of the `instancesList` data frame stored in the
logFile has been renamed to `"instanceID"`. This data frame should not be
accessed directly. Instead use the new function `get_instanceID_seed_pairs()`.

* Using `maxTime > 0` with `elitist=0` now gives a clear error rather than fail later.
(fix #65, reported by @DE0CH)

* `path_rel2abs()` will not expand symlinks to avoid problems with Python's venv.
(fix #64, reported by @DE0CH)

* Expansion of `'~'` in Windows now follows the definition of `fs::path_expand()` rather than `base::path.expand()`.

* irace is now more strict in enforcing runtime bounds given with `scenario$boundMax`
and will stop with an error if the `target-runner` reports a runtime larger than the given bound.

* All functions that contained a period (`'.'`) in the name have been renamed to use `'_'` instead.

* The periods (`'.'`) in the arguments of `scenario$targetRunnerParallel`
and `scenario$targetEvaluator` have also been replaced by `'_'`.

* The environment `.irace` that was available in the log file under
`iraceResults$state$.irace` is replaced directly by `iraceResults$state`.
It contains similar information but some entries have been renamed. For
example, the `experimentLog` data frame is now called `experiment_log`
and it is a [`data.table`](https://r-datatable.com).

* The interface of `psRace()` has been simplified.

* `irace` will automatically execute a post-selection race (`psRace()`) using
any remaining budget (currently only when `maxTime == 0`). To disable
this behavior, set the scenario option `postselection` (`--postselection`)

70

to `0`.

New features and improvements

* `sampleUniform()` and `sampleModel()` are significantly faster thanks to using [`data.table`](https://r-datatable.com).

* Initial configurations are sampled using Sobol low-discrepancy sequences using `spacefillr::generate_sobol_set()`. This should provide a better initial distribution of parameter values.

* Parameter spaces can be constructed programmatically using `parametersNew()`. See the documentation for details.

* Ablation will report configurations that produced the same results, which
indicates parameter values that have the same effect on the target algorithm,
possibly indicating a bug in the target algorithm.

* New option `instancesFile` of `ablation()` for using either the training
instances, the test instances or reading instances from a given file.

* New option `nrep` of `ablation()` specifies the number of replications per
instance used in `"full"` ablation. It replaces the previous parameter
`n_instances`, whose definition was more difficult to use correctly.

* Matrix operations are faster thanks to `matrixStats`.

* New scenario option `blockSize` for defining blocks of instances.
Configurations are only eliminated after evaluating a complete block and
never in the middle of a block. This is useful for scenarios when there are
clearly defined instance classes and the best configuration should be
balanced among them. In that case, `trainInstancesFile` should be written
so that each block contains one instance of each class and
`blockSize` is set to the number of classes.

* New scenario option `targetRunnerTimeout`: Timeout in seconds of any
`targetRunner` call (only applies to `target-runner` executables not to R
functions).

* `plotAblation()` has several new options:
- `type='rank'` to plot ranks per instance instead of raw cost values.
- `n` to limit the number of parameters shown in the plot.
- `width` replaces `pdf.width`.
- `height` sets the height of the plot in the PDF file.

* The previously internal function `check.output.target.runner` is renamed to
`check_output_target_runner` and exported to allow users who write their own
`targetRunnerParallel` to check the output and repair it if possible.
(Deyao Chen)

* New functions `read_ablogfile()`, `has_testing_data()`, `irace_summarise()`.

* New functions `get_random_seed()`, `set_random_seed()`,
`restore_random_seed()` useful for writing `targetRunner` functions in R.

* New function `get_instanceID_seed_pairs()` to get the pairs of instanceID
and random seed used during the races (and optionally the actual instances).

* The `parameters` object now stores the number of `digits` (decimal places
after the point) for each parameter of type `r`. As a result, the
`repairConfiguration` function (see `defaultScenario()`) only needs two
arguments: `configuration` and `parameters`. See examples in the user-guide.

* `readScenario()` (and command-line irace) do not require a `scenario.txt` file.
(Contributed by @DE0CH)

71

* `read_pcs_file()` now supports forbidden configurations.

* When testing, `irace` now prints the random seed used for each instance as an additional column.

* The package provides a new executable `target-runner-dummy` (or
`target-runner-dummy.exe` in Windows) for the purposes of testing. It may
also be useful for understanding the typical setup of `irace`.

* New scenario option `minExperiments` to set a minimum budget of runs.
(proposed by @Saethox, fixes #58)

* New function `multi_irace()` for executing multiple runs of irace with the
same or different scenarios and parameters, possibly in parallel.

(Contributed by @Saethox)

Fixes

* `ablation_cmdline()` and `plotAblation()` no longer create an empty `Rplots.pdf` file when specifying an output PDF file.

* Fix #66: when using `maxTime > 0`, irace estimates the time per run by
executing 2 configurations on `firstTest` instances and adjusts `boundMax`
to not go over `budgetEstimation`. This may result in a smaller `boundMax`
than before. To reduce this impact, the default value of `budgetEstimation`
is now `0.05` instead of `0.02`.

(Manuel López-Ibáñez, reported by @DE0CH)

* Fix #55: Configurations provided may use `<NA>` in addition to `NA` to denote
the missing value of a disabled parameter.

(Manuel López-Ibáñez, reported by @TheIronBorn)

* Fix #44: irace now will give an error if the domain of real-valued (r)
parameters would change depending on the value of `'digits'`. The solution
is to increase the value of `'digits'` or adjust the domain.

(Manuel López-Ibáñez, reported by @mb706)

* If scenario option `targetRunnerParallel` is set, irace no longer tries to
initialize a parallel environment or setup MPI. It is now the responsibility
of the user to do that before calling irace or within the function assigned
to `targetRunnerParallel`.

* irace no longer sets `option(error=utils::recover())` in debug mode to avoid issues
when calling irace from Python. The user can set this if desired.

* Fix bug failing to restart with parameters that have dependent domains.

* Fix bug with `sampleInstances=FALSE` that could re-evaluate the same
(instance, seed) pair more than once.

* Fix bug when using `targetRunnerLauncher` and `targetRunner` contain whitespace.

* Fix bug in `ablation_cmdline()` about missing `scenario` object.

* `ablation()` will now save and restore the previous random seed.

* `ablation()` will detect if the logfile (e.g., `irace.Rdata`) is incomplete.

* `readConfigurationsFile()` now handles parameters with dependent domains.

* Fix #71: Ensure `".ID."` is the first column in `checkTargetFiles()` (Manuel López-Ibáñez, reported by @ivan1arriola)

72

irace 3.5

New features and improvements

* Handling of dependent parameter domains: These should be specified in the
parameter domain definition and, for now, only numerical parameter can
define dependent domains. A numerical domain can be dependent on one bound,
e.g. `(1, "param1*2")`, where the dependent bound can include basic
arithmetic operators. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The package now provides an `ablation` executable (`ablation.exe` in
Windows) that makes easier to perform ablation analysis without having any R
knowledge.

* The interface to functions `ablation()` and `plotAblation()` has been
simplified. The `ablation()` function now allows overriding scenario
settings. The `plotAblation()` function will not create the plot if the
ablation log does not contain a complete ablation.

(Manuel López-Ibáñez)

* The argument `n.instances` of `ablation()` has been renamed to `n_instances`
and it is now a factor that multiplies `scenario$firstTest`.

(Manuel López-Ibáñez)

* New command-line option `--quiet` to run without producing any output
except errors (also available as a scenario option).

(Manuel López-Ibáñez)

* New command-line option `--init` to initialize a scenario. (Deyao Chen)

* Added support for HTCondor cluster framework to `--batchmode`.
(Filippo Bistaffa)

* `--check` now also check the contents of `configurationsFile` and runs
configurations provided via `initConfigurations`.

(Manuel López-Ibáñez, reported by Andreea Avramescu)

* New scenario options `targetRunnerLauncher` and `targetRunnerLauncherArgs`
to help in cases where the target-runner must be invoked via another
software with particular options (such as `python.exe` in Windows).

(Manuel López-Ibáñez)

* New scenario option `minMeasurableTime`.
(Manuel López-Ibáñez)

* An error is produced if a variable set in the scenario file is not known to
irace. If your scenario file contains R code, then use variable names
beginning with a dot `'.'`, which will be ignored by irace.

(Manuel López-Ibáñez)

* Plotting functions have been moved to the new package
[iraceplot](https://auto-optimization.github.io/iraceplot/). In particular,
`configurationsBoxplot()` is replaced by `iraceplot::boxplot_training()` and
`iraceplot::boxplot_test()`; `parallelCoordinatesPlot()` is replaced by
`iraceplot::parallel_cat()` and `iraceplot::parallel_coord()`; and
`parameterFrequency()` is replaced by `iraceplot::sampling_frequency()`.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The user-guide now contains a detailed section on "Hyper-parameter
optimization of machine learning methods".

(Manuel López-Ibáñez)

73

* When `testType="F-test"` and only two configurations remain, the elimination
test now uses the pseudo-median estimated by the Wilcoxon signed-rank test
to decide which configuration is the best one instead of comparing the
median difference.

(Manuel López-Ibáñez)

* New functions `testing_fromlog()` and `testing_fromfile()` for independently
executing the testing phase. The function `testing.main()` was removed as it
is superseded by the new ones.

(Manuel López-Ibáñez)

* New function `read_logfile()` to easily read the log file produced by irace.
(Manuel López-Ibáñez)

* New function `printParameters()` that prints a parameters R object as a valid input text.
(Manuel López-Ibáñez)

* `irace2pyimp` moved to its own R package.
(Manuel López-Ibáñez)

* Generating the file `irace.Rdata` may be disabled by setting `logFile=""`.
(Manuel López-Ibáñez, reported by Johann Dreo)

* `path_rel2abs()` and `checkParameters()` are now exported so that other
packages may use them.

(Manuel López-Ibáñez)

* `path_rel2abs()` also searches in system paths. (Manuel López-Ibáñez)

* `readConfigurationsFile()` will now detect duplicated configurations and
error. (Manuel López-Ibáñez)

* The interface to functions `getFinalElites()`, `getConfigurationById()` and
`getConfigurationByIteration()` has been simplified.

* The package provides a `irace.sindef` file that may be used for building a
standalone container of irace using Singularity. See the `README.md` file
for instructions. (Contributed by Johann Dreo)

* New example `examples/target-runner-python/target-runner-python-win.bat`
contributed by Levi Ribeiro.

* New helper script in `bin/parallel-irace-slurm` to launch `irace` in [SLURM](https://slurm.schedmd.com/) computer clusters.
(Manuel López-Ibáñez)

* Rename `scenario.update.paths()` to `scenario_update_paths()`. The old name is deprecated. (Manuel López-Ibáñez)

Fixes

* Correctly handle clear out-performance cases despite strong bi-modality.
(Reported by Nguyen Dang,
fixed by Manuel López-Ibáñez)

* Fix error when recovering from a parallel run on Windows.
(Manuel López-Ibáñez, reported by Tarek Gamal)

* `testNbElites` now controls how many iteration elites are tested when
`testIterationElites=1`. This is the documented behavior in the user guide.

(Manuel López-Ibáñez, reported by Marcelo de Souza)

* Fixes to the Matlab example. (Manuel López-Ibáñez)

74

* The default of `testType` is now set to `t-test` when capping is enabled.
(Manuel López-Ibáñez, reported by Jovana Radjenovic)

* Fix various issues in the user guide.
(Manuel López-Ibáñez, reported by Jovana Radjenovic)

* Remove duplicated elites.
(Manuel López-Ibáñez, reported by Federico Naldini)

* Fix (#7): warnings with partial matched parameters.
(Manuel López-Ibáñez, reported by Marc Becker)

* Fix (#10): wrong assert with `elitist=0`. (Manuel López-Ibáñez)

* Fix (#12): irace can be run with [FastR](https://www.graalvm.org/22.1/docs/getting-started/#run-r).

* Fix (#13): Maximum number configurations immediately rejected reached.
(Manuel López-Ibáñez)

* Fix: when setting the scenario file in the command-line, `scenarioFile` was
not set correctly. The correct scenario was used, however, the debug output
and the value stored in the log / recovery file was wrong.

(Manuel López-Ibáñez, reported by Richard Schoonhoven)

* With `sampleInstances = FALSE`, elitist irace does not change the order of
instances already seen. However, if you want to make sure that the order of
the instances is enforced, you also need to set `elitistNewInstances=0`.

* The function `irace.usage()` was removed. It was not really useful for R
users as the same result can be obtained by calling
`irace.cmdline("--help")`.

(Manuel López-Ibáñez)

irace 3.4.1 (31/03/2020)

* `NEWS` converted to markdown.

* Fix CRAN error on Solaris.

irace 3.4 (30/03/2020)

* `irace2pyimp` function and executable (`irace2pyimp.exe` on Windows) to
convert .Rdata files generated by irace to the input files required by the
parameter importance analysis tool PyImp
(https://github.com/automl/ParameterImportance).

(Nguyen Dang, Manuel López-Ibáñez)

* Initial configurations may also be provided directly in R using
`scenario$initConfigurations`

(Manuel López-Ibáñez)

* Rdata files are saved in version 2 to keep compatibility with older R
versions.

(Manuel López-Ibáñez)
* Fix invalid assert with ordered parameters: (Leslie Pérez Cáceres)

```
value >= 1L && value <= length(possibleValues) is not TRUE
```

75

* The `irace` executable (`irace.exe` on Windows) is a compiled binary instead
of a script. On Windows, `irace.exe` replaces `irace.bat`

(Manuel López-Ibáñez)

* `inst/examples/Spear` contains the Spear (SAT solver) configuration scenario.
(Manuel López-Ibáñez)

* Fixed bug when reporting minimum `maxTime` required.
(Reported by Luciana Salete Buriol,
fixed by Manuel López-Ibáñez)

* Fixed bug detected by assert:

```R
all(apply(!is.na(elite.data$experiments), 1, any)) is not TRUE
```

(Reported by Maxim Buzdalov, fixed by Manuel López-Ibáñez)

irace 3.3 (26/04/2019)

* Fix buggy test that breaks CRAN. (Manuel López-Ibáñez)

* Do not print "23:59:59" when wall-clock time is actually close to zero.
(Manuel López-Ibáñez)

irace 3.2 (24/04/2019)

* Fix `irace --check --parallel 2` on Windows. (Manuel López-Ibáñez)

* Values of real-valued parameter are now printed with sufficient precision to
satisfy `digits` (up to `digits=15`).

(Manuel López-Ibáñez)

* It is possible to specify `boundMax` without capping.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* `irace --check` will exit with code 1 if the check is unsuccessful
(Manuel López-Ibáñez)

* Print where irace is installed with `--help`. (Manuel López-Ibáñez)

* irace will now complain if the output of `target-runner` or `target-evaluator`
contains extra lines even if the first line of output is correct. This is to
avoid parsing the wrong output. Unfortunately, this may break setups that
relied on this behavior. The solution is to only print the output that irace
expects.

(Manuel López-Ibáñez)

* Completely re-implement `log` parameters to fix several bugs. Domains that
contain zero or negative values are now rejected.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* New option `aclib=` (`--aclib 1`) enables compatibility with the
GenericWrapper4AC (https://github.com/automl/GenericWrapper4AC/) used by
AClib (http://aclib.net/). This is EXPERIMENTAL. `--aclib 1` also sets
digits to 15 for compatibility with AClib defaults.

(Manuel López-Ibáñez)

* Fix printing of output when capping is enabled.
(Manuel López-Ibáñez)

76

* `checkTargetFiles()` (`--check`) samples an instance unless
`sampleInstances` is FALSE. (Manuel López-Ibáñez)

* Fix symbol printed in elimination test. (Manuel López-Ibáñez)

* Use `dynGet()` to find `targetRunner` and `targetEvaluator`.
As a result, we now require R >= 3.2.

(Manuel López-Ibáñez)

* All tests now use `testthat`. (Manuel López-Ibáñez)

* New function `scenario.update.paths()` (Manuel López-Ibáñez)

* Fix assert failure that may happen when `elitistNewInstances` is larger than
`firstTest`. Reported by Jose Riveaux. (Manuel López-Ibáñez)

* Fix bug in `checkTargetFiles()` (`--check`) with capping.
(Leslie Pérez Cáceres)

* Clarify a few errors/warnings when `maxTime > 0`.
(Manuel López-Ibáñez, suggested by Haroldo Gambini Santos)

irace 3.1 (12/07/2018)

* Use testthat for unit testing. (Manuel López-Ibáñez)

* Allow instances to be a list of arbitrary R objects (`mlr` bugfix).
(Manuel López-Ibáñez)

irace 3.0 (05/07/2018)

* irace now supports adaptive capping for computation time minimization.
The default value of the `testType` option is t-test when adaptive capping
is enabled. Please see the user-guide for details.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The package contains an `ablation()` function implementing the ablation
method for parameter importance analysis by Fawcett and Hoos (2016).

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* New option `postselection` executes a post-selection race.
(Leslie Pérez Cáceres)

* At the end of each race, if the race stops before evaluating all instances
seen in previous races, then the best overall may be different than the best
of the race. We now print the best overall (best-so-far). Elites evaluated
on more instances are considered better than those evaluated on fewer.

(Manuel López-Ibáñez, Leslie Pérez Cáceres)

* Last active parameter values of numerical parameters (`i` and `r`) are carried
by the sampling model. When a value must be assigned and the parameter was
previously not active, the sampling is performed around the last value.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* R help pages are now generated with Roxygen2.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The user guide documents `--version`, `--help`, and `--check`.
(Manuel López-Ibáñez)

77

* A return value of `Inf` from `targetRunner`/`targetEvaluation` results in
the immediate rejection of the configuration without any further evaluation.
This is useful for handling unreliable or broken configurations that should
not stop irace. (Manuel López-Ibáñez)

* Numerical parameters may be sampled on a logarithmic scale using `i,log`
or `r,log`. (Alberto Franzin)

* New `target-runner.bat` for Windows contributed by André de Souza Andrade.

* Fixed all shell scripts calling functions before defining them, which is not
portable.

(Manuel López-Ibáñez)

* Fixed `--parallel` bug in Windows that resulted in
`Error in checkForRemoteErrors(val)`.

(Manuel López-Ibáñez)

* Improve error message when no training instances are given.
(Manuel López-Ibáñez)

irace 2.4 (03/08/2017)

* The output of irace now specifies in which order, if any, configurations are
printed.

(Manuel López-Ibáñez, suggested by Markus Wagner)

* Several fixes for handling paths in Windows.
(Manuel López-Ibáñez)

* `readConfigurationsFile()` now has a `text=` argument, which allows reading
configurations from a string.

(Manuel López-Ibáñez)

* User-provided functions (targetRunner, targetEvaluator and
repairConfiguration) and user-provided conditions for forbidden
configurations are now byte-compiled when read, which should make their
evaluation noticeably faster.

(Manuel López-Ibáñez)

* The argument `'experiment'` passed to the R function `targetRunner` does not
contain anymore an element `'extra.params'`. Similarly, the `'scenario'`
structure does not contain anymore the elements `'instances.extra.params'` and
`'testInstances.extra.params'`. Any instance-specific parameters values now
form part of the character string that defines an instance and it is up to
the user-defined `targetRunner` to parse them appropriately. These changes
make no difference when targetRunner is an external script, or when
instances and instance-specific parameter values are read from a file.

(Manuel López-Ibáñez)

irace 2.3

* Fix bug that will cause `iraceResults$experimentLog` to count calls to
`targetEvaluator` as experiments, even if no call to `targetRunner` was
performed. This does not affect the computation of the budget consumed and,
thus, it does not affect the termination criteria of irace. The bug triggers
an assertion that terminates irace, thus no run that was successful with
version 2.2 is affected.

(Manuel López-Ibáñez)

irace 2.2

78

* Command-line parameters are printed to stdout (useful for future
replications). (Manuel López-Ibáñez, suggested by Markus Wagner)

* Users may provide a function to repair configurations before being
evaluated. See the scenario variable repairConfiguration.

(Manuel López-Ibáñez)

* The option `--sge-cluster` (`sgeCluster`) was removed and replaced by
`--batchmode` (`batchmode`). It is now the responsibility of the target-runner
to parse the output of the batch job submission command (e.g., `qsub` or
`squeue`), and return just the job ID. Values supported are: "sge", "torque",
"pbs" and "slurm". (Manuel López-Ibáñez)

* The option `--parallel` can now be combined with `--batchmode` to limit the
number of jobs submitted by irace at once. This may be useful in batch
clusters that have a small queue of jobs.

(Manuel López-Ibáñez)

* New examples under `inst/examples/batchmode-cluster/`.
(Manuel López-Ibáñez)

* It is now possible to include scenario definition files from other scenario
files by using:

```R
eval.parent(source("scenario-common.txt", chdir = TRUE, local = TRUE))
```

This feature is VERY experimental and the syntax is likely to change in the
future. (Manuel López-Ibáñez)

* Fix a bug that re-executed elite results under some circumstances.
(Leslie Pérez Cáceres)

* Restrict the number of maximum configurations per race to 1024.
(Leslie Pérez Cáceres)

* Do not warn if the last line in the instance file does not terminate with a
newline. (Manuel López-Ibáñez)

* Fix bug when `deterministic == 1`.
(Manuel López-Ibáñez, Leslie Pérez Cáceres)

* Update manual and vignette with details about the expected arguments and
return value of `targetRunner` and `targetEvaluator`. (Manuel López-Ibáñez)

* Many updates to the User Guide vignette. (Manuel López-Ibáñez)

* Fix `\dontrun` example in `irace-package.Rd` (Manuel López-Ibáñez)

* Fix bug: If testInstances contains duplicates, results of testing are not
correctly saved in `iraceResults$testing$experiments` nor reported correctly
at the end of a run. Now unique IDs of the form `1t, 2t, ...` are used for
each testing instance. These IDs are used for the rownames of
`iraceResults$testing$experiments` and the names of the
`scenario$testInstances`
and `iraceResults$testing$seeds` vectors. (Manuel López-Ibáñez)

* Fix bug where irace keeps retrying the `target-runner` call even if it
succeeds. (Manuel López-Ibáñez)

79

* New command-line parameter
```

--only-test FILE
```

which just evaluates the configurations given in FILE on the testing
instances defined by the scenario. Useful if you decide on the testing
instances only after running irace. (Manuel López-Ibáñez)

* Bugfix: When using `maxTime != 0`, the number of experiments performed may be
miscounted in some cases. (Manuel López-Ibáñez)

irace 2.1

* Fix CRAN errors in tests. (Manuel López-Ibáñez)

* Avoid generating too many configurations at once if the initial time
estimation is too small. (Manuel López-Ibáñez)

irace 2.0

* Minimum R version is 2.15.

* Elitist irace by default, it can be disabled with parameter `--elitist 0`.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The parameter `--test-type` gains two additional values: (Manuel López-Ibáñez)

- `t-test-bonferroni` (t-test with Bonferroni's correction for multiple
comparisons),

- `t-test-holm` (t-test with Holm's correction for multiple comparisons)

* MPI does not create log files with `--debug-level 0`.
(Manuel López-Ibáñez)

* For simplicity, the `parallel-irace-*` scripts do not use an auxiliary
`tune-main` script. For customizing them, make a copy and edit them
directly.
(Manuel López-Ibáñez)

* New parameters: (Manuel López-Ibáñez)
```
--target-runner-retries : Retry target-runner this many times in case of error.
```

* We print diversity measures after evaluating on each instance:
(Leslie Pérez Cáceres)

- Kendall's W (also known as Kendall's coefficient of concordance) If 1,
all candidates have ranked in the same order in all instances. If 0, the
ranking of each candidate on each instance is essentially random.

W = Friedman / (m * (k-1))

- Spearman's rho: average (Spearman) correlation coefficient computed on the
ranks of all pairs of raters. If there are no repeated data values, a
perfect Spearman correlation of +1 or -1 occurs when each of the variables
is a perfect monotone function of the other.

* Many internal and external interfaces have changed. For example, now we
consistently use 'scenario' to denote the settings passed to irace and

80

'configuration' instead of 'candidate' to denote the parameter settings
passed to the target algorithm. Other changes are:

```R
parameters$boundary -> parameters$domain
hookRun -> targetRunner
hookEvaluate -> targetEvaluator
tune-conf -> scenario.txt
instanceDir -> trainInstancesDir
instanceFile -> trainInstancesFile
testInstanceDir -> testInstancesDir
testInstanceFile -> testInstancesFile

```

* Minimal example of configuring a MATLAB program
(thanks to Esteban Diaz Leiva)

* Paths to files or directories given in the scenario file are relative to the
scenario file (except for `--log-file`, which is an output file and it is
relative to `--exec-dir`). Paths given in the command-line are relative to the
current working directory. Given

```bash
$ cat scenario/scenario.txt
targetRunner <- "./target-runner"
$ irace -s scenario/scenario.txt

```
irace will search for `"./scenario/target-runner"`, but given

```bash
$ irace -s scenario/scenario.txt --target-runner ./target-runner

```
irace will search for `"./target-runner"`. (Manuel López-Ibáñez)

* New command-line wrapper for Windows installed at
`system.file("bin/irace.bat", package="irace")`
(thanks to Anthony Antoun)

* Budget can be specified as maximum time (`maxTime`, `--max-time`) consumed by
the target algorithm. See the documentation for the details about how this
is handled.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

irace 1.07

* The best configurations found, either at the end or at each iteration of an
irace run, can now be applied to a set of test instances different from the
training instances. See options `testInstanceDir`, `testInstanceFile`,
`testNbElites`, and `testIterationElites`. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The R interfaces of `hookRun`, `hookEvaluate` and `hookRunParallel` have changed.
See `help(hook.run.default)` and `help(hook.evaluate.default)` for examples of
the new interfaces.

* Printing of race progress now reports the actual configuration and instance
IDs, and numbers are printed in a more human-readable format.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Reduce memory use for very large values of `maxExperiments`.
(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* New option `--load-balancing` (`loadBalancing`) for disabling load-balancing
when executing jobs in parallel. Load-balancing makes better use of
computing resources, but increases communication overhead. If this overhead

81

is large, disabling load-balancing may be faster.
(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* The option `--parallel` in Windows now uses load-balancing by default.
(Manuel López-Ibáñez)

* The wall-clock time after finishing each task is printed in the output.
(Manuel López-Ibáñez, thanks to Federico Caselli for providing an initial
patch)

irace 1.06

* Fix bug that could introduce spurious whitespace when printing the
final configurations. (Manuel López-Ibáñez)

* Fix bug if there are more initial candidates than needed for the
first race. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* New configuration options, mainly for R users:

- `hookRunParallel`: Optional R function to provide custom
parallelization of `hook.run`.

- `hookRunData`: Optional data passed to `hookRun`. This is ignored by the
default `hookRun` function, but it may be used by custom `hookRun` R
functions to pass persistent data around. (Manuel López-Ibáñez)

irace 1.05

* New option `--version`. (Manuel López-Ibáñez)

* Terminate early if there is no sufficient budget to run irace with
the given settings. (Manuel López-Ibáñez)

* The option `--parallel` (without `--mpi`) now works under Windows.
(Manuel López-Ibáñez, thanks to Pablo Valledor Pellicer for testing
it)

* Improved error handling when running under Rmpi. Now irace will
terminate as soon as the master node detects at least one failed
slave node. This avoids irace reporting two times the same error.
Also, irace will print all the unique errors returned by all slaves
and not just the first one.
(Manuel López-Ibáñez)

* Forbidden configurations may be specified in terms of constraints
on their values. Forbidden configurations will never be evaluated by irace.
See `--forbidden-file` and `inst/templates/forbidden.tmpl`.
(Manuel López-Ibáñez)

* New option `--recovery-file` (`recoveryFile`) allows resuming a
previous irace run. (Leslie Pérez Cáceres)

* The confidence level for the elimination test is now
configurable with parameter `--confidence`. (Leslie Pérez Cáceres)

* Much more robust handling of relative/absolute paths. Improved support
for Windows. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Provide better error messages for incorrect parameter
descriptions. (Manuel López-Ibáñez)

82

Examples:
```

x "" i (0, 0) # lower and upper bounds are the same
x "" r (1e-4, 5e-4) # given digits=2, ditto
x "" i (-1, -2) # lower bound must be smaller than upper bound
x "" c ("a", "a") # duplicated values

```
* Print elapsed time for calls to hook-run if `debugLevel >=1`.

(Manuel López-Ibáñez)

* `examples/hook-run-python/hook-run`: A multi-purpose `hook-run` written
in Python. (Franco Mascia)

* Parallel mode in an SGE cluster (`--sge-cluster`) is more
robust. (Manuel López-Ibáñez)

irace 1.04

* Replace obsolete package multicore by package parallel
(requires R >= 2.14.0)

* Use load-balancing (`mc.preschedule = FALSE`) in `mclapply`.

irace 1.03

* Use `reg.finalizer` to finish Rmpi properly without clobbering
`.Last()`.

* Remove uses of deprecated `as.real()`.

* Nicer error handling in `readParameters()`.

* Add hypervolume (multi-objective) example.

* Fix several bugs in the computation of similar candidates.

irace 1.02

* More concise output.

* The parameters `expName` and `expDescription` are now useless and they
were removed.

* Faster computation of similar candidates (Jeremie Dubois-Lacoste
and Leslie Pérez Cáceres).

* Fix bug when saving instances in `tunerResults$experiments`.

* `irace.cmdline ("--help")` does not try to quit R anymore.

irace 1.01

* Fix bug caused by file.exists (and possibly other functions)
not handling directory names with a trailing backslash or slash on
Windows.

* Fix bug using per-instance parameters (Leslie Pérez Cáceres).

* Fix bug when reading initial candidates from a file.

83

	General information
	Background
	Version
	License

	Before starting
	Installation
	System requirements
	irace installation
	Install automatically within R
	Manual download and installation
	Local installation
	Testing the installation and invoking irace

	Running irace
	Step-by-step setup guide
	Setup example for ACOTSP

	Defining a configuration scenario
	Target algorithm parameters
	Parameter types
	Parameter domains
	Parameter dependent domains
	Conditional parameters
	Forbidden parameter configurations
	Global options
	Parameter file format
	Parameters R format

	Target algorithm runner
	Target runner as an executable program
	Target runner as an R function

	Target evaluator
	Target evaluator executable program
	Target evaluator R function

	Training instances
	Initial configurations
	Repairing configurations

	Parallelization
	Testing (Validation) of configurations
	Recovering irace runs
	Output and results
	Text output
	R data file (logFile)
	Analysis of results

	Advanced topics
	Tuning budget
	Multi-objective tuning
	Tuning for minimizing computation time
	Hyper-parameter optimization of machine learning methods
	Heterogeneous scenarios
	Choosing the statistical test
	Complex parameter space constraints
	Unreliable target algorithms and immediate rejection
	Ablation Analysis
	Postselection race
	Parameter importance analysis using PyImp

	List of command-line and scenario options
	General options
	Elitist irace
	Internal irace options
	Target algorithm parameters
	Target algorithm execution
	Initial configurations
	Training instances
	Tuning budget
	Statistical test
	Adaptive capping
	Recovery
	Testing

	FAQ (Frequently Asked Questions)
	Is irace minimizing or maximizing the output of my algorithm?
	Are experiments with irace reproducible?
	Is it possible to configure a MATLAB algorithm with irace?
	My program works perfectly on its own, but not when running under irace. Is irace broken?
	irace seems to run forever without any progress, is this a bug?
	My program may be buggy and run into an infinite loop. Is it possible to set a maximum timeout?
	When using the mpi option, irace is aborted with an error message indicating that a function is not defined. How to fix this?
	Error: 4 arguments passed to .Internal(nchar) which requires 3
	Warning: In read.table(filename, header = TRUE, colClasses = "character", : incomplete final line found by …
	How are relative filesystem paths interpreted by irace?
	My parameter space is small enough that irace could generate all possible configurations; however, irace generates repeated configurations and/or does not generate some of them. Is this a bug?
	On Windows and using target-runner.py (a Python file), I get the error target-runner.py is not executable
	Error in socketConnection(…) : can not open the connection

	Resources and contact information
	Acknowledgements
	Bibliography
	Appendix Installing R
	GNU/Linux
	OS X
	Windows

	Appendix targetRunner troubleshooting checklist
	Appendix targetEvaluator troubleshooting checklist
	Appendix Glossary
	Appendix NEWS

